Skip to main content

Advertisement

Log in

Diversity and Spatial Structure of Soil Fungi and Arbuscular Mycorrhizal Fungi in Forest Litter Contaminated with Copper Smelter Emissions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The diversity and spatial structure of soil fungi (SF) and arbuscular mycorrhizal fungi (AMF) communities in the southern taiga forest litter were studied in sites with two contrasting contamination levels with copper smelter emissions. The operational taxonomic unit richness and evenness in the communities of both target groups decreased under contamination. The community structure of contaminated and control areas differed for SF, whereas they were similar for AMF. According to spatial structure analysis results on a scale of tens of meters, a gradual change of composition with distance was revealed for the SF community within 30-m intervals in the control sites. No spatial autocorrelation was found for AMF in the control sites. However, pronounced patchiness was characteristic of both SF and AMF communities within 10 m of contaminated sites. In the contaminated area, no specific spatial structure determinants of the studied communities was found among environmental factors such as water content, heavy metal concentrations in the forest litter, sample plot localization relative to canopy density, and herb vegetation diversity and abundance. However, in the control sites, AMF richness depended on herb abundance and litter chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdo, Z., Schuette, U. M. E., Bent, S. J., Williams, C. J., Forney, L. J., & Joyce, P. (2006). Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environmental Microbiology, 8(5), 929–938.

    Article  Google Scholar 

  • Akhmetzhanova, A. A., Soudzilovskaia, N. A., Onipchenko, V. G., Cornwell, W. K., Agafonov, V. A., Selivanov, I. A., et al. (2012). A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology, 93(3), 689.

    Article  Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46.

    Google Scholar 

  • Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1), 245–253.

    Article  Google Scholar 

  • Anderson, I. C., Parkin, P. I., & Campbell, C. D. (2008). DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biology & Biochemistry, 40(9), 2358–2365.

    Article  CAS  Google Scholar 

  • Antonovics, J., Bradshaw, A. D., & Turner, R. G. (1971). Heavy metal tolerance in plants. In: J. B. Cragg (Ed.), Advances in Ecological Research (vol. 7, pp. 1–85). London and New York: Academic.

  • Bååth, E., Díaz-Raviña, M., & Bakken, L. R. (2005). Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microbial Ecology, 50(4), 496–505.

    Article  Google Scholar 

  • Baldrian, P. (2010). Effect of heavy metals on saprotrophic soil fungi. In I. Sherameti & A. Varma (Eds.), Soil heavy metals (soil biology) (Vol. 19, pp. 263–279). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Vetrovský, T., et al. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME Journal, 6(2), 248–258.

    Article  CAS  Google Scholar 

  • Bergman, I. E. (2011). Biological productivity of spruce and fir in the gradient of air pollution in the Urals: Comparative analysis and forest inventory tables (in Russian). Ph.D thesis, USFEU, Ekaterinburg.

  • Brundrett, M. C., & Abbott, L. K. (2002). Arbuscular mycorrhizas in plant communities. In K. Sivasithamparam, K. W. Dixon, & R. L. Barrett (Eds.), Microorganisms in plant conservation and diversity (pp. 151–194). Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Dray, S., Legendre, P., & Peres-Neto, P. R. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196(3–4), 483–493.

    Article  Google Scholar 

  • Ettema, C. H., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution, 17(4), 177–183.

    Article  Google Scholar 

  • Fomina, M., Ritz, K., & Gadd, G. M. (2000). Negative fungal chemotropism to toxic metals. FEMS Microbiology Letters, 193(2), 207–211.

    Article  CAS  Google Scholar 

  • Fortin, M.-J., & Dale, M. R. T. (2005). Spatial analysis: a guide for ecologists. Cambridge, UK: Cambridge University Press.

  • Franklin, R., & Mills, A. (2007). The spatial distribution of microbes in the environment. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Fritsch, C., Coeurdassier, M., Giraudoux, P., Raoul, F., Douay, F., Rieffel, D., et al. (2011). Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. PLoS ONE, 6(5), e20682.

    Article  CAS  Google Scholar 

  • Frostegård, A., Tunlid, A., & Bååth, E. (1996). Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology & Biochemistry, 28(1), 55–63.

    Article  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology & Biochemistry, 30(10–11), 1389–1414.

    Article  CAS  Google Scholar 

  • Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391.

    Article  Google Scholar 

  • Hui, N., Liu, X. X., Kurola, J., Mikola, J., & Romantschuk, M. (2012). Lead (Pb) contamination alters richness and diversity of the fungal, but not the bacterial community in pine forest soil. Boreal Environment Research, 17(1), 46–58.

    CAS  Google Scholar 

  • Johnson, N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185(3), 631–647.

    Article  CAS  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69(3), 373–386.

    Article  Google Scholar 

  • Kadowaki, K., Sato, H., Yamamoto, S., Tanabe, A., Hidaka, A., & Toju, H. (2013). Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Population Ecology, 56(2), 301–310.

    Article  Google Scholar 

  • Kaigorodova, S. Y., & Vorobeichik, E. L. (1996). Changes in certain properties of grey forest soil polluted with emissions from a copper-smelting plant. Russian Journal of Ecology, 27(3), 177–183.

    Google Scholar 

  • Kataržytė, M., & Kutorga, E. (2011). Small mammal mycophagy in hemiboreal forest communities of Lithuania. Central European Journal of Biology, 6(3), 446–456.

    Article  Google Scholar 

  • Kivlin, S. N., Winston, G. C., Goulden, M. L., & Treseder, K. K. (2014). Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecology 12:14–25.

  • Klironomos, J. N., Rillig, M. C., & Allen, M. F. (1999). Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology, 12(3), 227–238.

    Article  Google Scholar 

  • Korbie, D. J., & Mattick, J. S. (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nature Protocols, 3(9), 1452–1456.

    Article  CAS  Google Scholar 

  • Korkama-Rajala, T., Mueller, M. M., & Pennanen, T. (2008). Decomposition and fungi of needle litter from slow- and fast-growing norway spruce (Picea abies) clones. Microbial Ecology, 56(1), 76–89.

    Article  Google Scholar 

  • Kuznetsova, N. A. (2009). Soil-dwelling Collembola in coniferous forests along the gradient of pollution with emissions from the Middle Ural Copper Smelter. Russian Journal of Ecology, 40(6), 415–423.

    Article  Google Scholar 

  • Lee, J., Lee, S., & Young, J. P. W. (2008). Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 65(2), 339–349.

    Article  CAS  Google Scholar 

  • Legendre, P. (1993). Spatial autocorrelation—trouble or new paradigm? Ecology, 74(6), 1659–1673.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (2012). Numerical ecology (developments in environmental modelling, vol. 24) (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Legendre, P., Borcard, D., & Roberts, D. W. (2012). Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology, 93(5), 1234–1240.

    Article  Google Scholar 

  • Lilleskov, E. A., Bruns, T. D., Horton, T. R., Taylor, D. L., & Grogan, P. (2004). Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiology Ecology, 49(2), 319–332.

    Article  CAS  Google Scholar 

  • Loreau, M. (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91(1), 3–17.

    Article  Google Scholar 

  • Mukhacheva, S. V. (2007). Spatiotemporal population structure of the bank vole in a gradient of technogenic environmental pollution. Russian Journal of Ecology, 38(3), 161–167.

    Article  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670.

    Article  Google Scholar 

  • Nesterkova, D. V. (2014). Distribution and abundance of European mole (Talpa europaea L.) in areas affected by two Ural copper smelters. Russian Journal of Ecology, 45(5), 429–436.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2014). vegan: Community Ecology Package. http://R-Forge.R-project.org/projects/vegan/. Accessed 27 July 2014.

  • Öpik, M., Moora, M., Zobel, M., Saks, U., Wheatley, R., Wright, F., et al. (2008). High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 179(3), 867–876.

    Article  Google Scholar 

  • Pečiulytė, D., & Dirginčiutė-Volodkienė, V. (2010). Effect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory 3. Species diversity and community structure of soil fungi. Ekologija, 56(3–4), 132–143.

    Google Scholar 

  • Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., & Nannipieri, P. (2009). Extracellular DNA in soil and sediment: fate and ecological relevance. Biology and Fertility of Soils, 45(3), 219–235.

    Article  CAS  Google Scholar 

  • Plenchette, C., & Strullu, D. G. (2003). Long-term viability and infectivity of intraradical forms of Glomus intraradices vesicles encapsulated in alginate beads. Mycological Research, 107(5), 614–616.

    Article  Google Scholar 

  • Ramsey, P. W., Rillig, M. C., Feris, K. P., Gordon, N. S., Moore, J. N., Holben, W. E., et al. (2005). Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecology Letters, 8(11), 1201–1210.

    Article  Google Scholar 

  • R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL: http://www.R-project.org/. Accessed 27 July 2014.

  • Ruotsalainen, A. L., & Kozlov, M. V. (2006). Fungi and air pollution: Is there a general pattern? In D. Rhodes (Ed.), New topics in environmental research (pp. 57–103). New York: Nova.

  • Saks, Ü., Davison, J., Öpik, M., Vasar, M., Moora, M., & Zobel, M. (2013). Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany, 92(4), 277–285.

    Article  Google Scholar 

  • Schloss, P. D., & Westcott, S. L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environmental Microbiology, 77(10), 3219–3226.

    Article  CAS  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). New York: Academic.

    Google Scholar 

  • Southworth, D., Tackaberry, L. E., & Massicotte, H. B. (2013). Mycorrhizal ecology on serpentine soils. Plant Ecology & Diversity, 7(3), 445–455.

    Article  Google Scholar 

  • Stavishenko, I. V., & Kshnyasev, I. A. (2013). Response of forest communities of xylotrophic fungi on industrial pollution: multimodel inference. Biology Bulletin, 40(4), 404–413.

    Article  Google Scholar 

  • Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE, 7(7), e40863.

    Article  CAS  Google Scholar 

  • Toler, H. D., Morton, J. B., & Cumming, J. R. (2005a). Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water, Air, and Soil Pollution, 164(1–4), 155–172.

    Article  CAS  Google Scholar 

  • Toler, H. D., Morton, J. B., & Cumming, J. R. (2005b). Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water, Air, and Soil Pollution, 164(1–4), 155–172.

    Article  CAS  Google Scholar 

  • Torsvik, V., & Ovreas, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3), 240–245.

    Article  CAS  Google Scholar 

  • Trubina, M. R. (2009). Species richness and resilience of forest communities: combined effects of short-term disturbance and long-term pollution. Plant Ecology, 201(1), 339–350.

    Article  Google Scholar 

  • Trubina, M. R., & Vorobeichik, E. L. (2012). Severe industrial pollution increases the β-diversity of plant communities. Doklady Biological Sciences, 442, 17–19.

    Article  CAS  Google Scholar 

  • Van der Linde, S., & Haller, S. (2013). Obtaining a spore free fungal community composition. Fungal Ecology, 6(6), 522–526.

    Article  Google Scholar 

  • Veselkin, D. V. (2005). Reaction of ectomycorrhizae of Pinus sylvestris to man-made contamination of various types (in Russian). Contemporary Problems of Ecology, 4, 753–761.

    Google Scholar 

  • Vorobeichik, E. L. (1998). Populations of earthworms (Lumbricidae) in forests of the Middle Urals in conditions of pollution by discharge from copper works. Russian Journal of Ecology, 29(2), 85–91.

    Google Scholar 

  • Vorobeichik, E. L. (2002). Changes in the spatial structure of the destruction process under the conditions of atmospheric pollution of forest ecosystems. Biology Bulletin, 29(3), 300–310.

    Article  CAS  Google Scholar 

  • Vorobeichik, E. L. (2007). Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution. Russian Journal of Ecology, 38(6), 398–407.

    Article  Google Scholar 

  • Vorobeichik, E. L., & Kozlov, M. V. (2012). Impact of point polluters on terrestrial ecosystems: methodology of research, experimental design, and typical errors. Russian Journal of Ecology, 43(2), 89–96.

    Article  Google Scholar 

  • Vorobeichik, E. L., & Pishchulin, P. G. (2011). Effect of trees on the decomposition rate of cellulose in soils under industrial pollution. Eurasian Soil Science, 44(5), 547–560.

    Article  CAS  Google Scholar 

  • Vorobeichik, E. L., Ermakov, A. I., Zolotarev, M. P., & Tuneva, T. K. (2012). Changes in diversity of soil macrofauna in industrial pollution gradient. Russian Entomological Journal, 21(2), 203–218.

    Google Scholar 

  • Vorobeichik, E. L., Trubina, M. R., Khantemirova, E. V., & Berman, I. E. (2014). Long-term dynamic of forest vegetation after the reduction of copper smelter emissions. Russian Journal of Ecology, 45(6):498–507.

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfond, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (Vol. 482, pp. 315–322). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G. S., et al. (2010). Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158(8), 2757–2765.

    Article  CAS  Google Scholar 

  • Zolotarev, M. P., & Belskaya, E. A. (2012). Effects of industrial pollution and habitat characteristics on epigeic invertebrate abundance. Euroasian Entomological Journal, 11(1), 19–28.

    Google Scholar 

Download references

Acknowledgments

We thank M. V. Modorov, I. E. Bergman, A. V. Schepetkin, and P. V. Kondratkov for technical assistance, an anonymous reviewer for helpful comments on this manuscript, and Enago (www.enago.com) for the English language review. This study was supported by the Russian Foundation for Basic Research (13-04-01699), the Scientific School Support Program (NSh-2840.2014.4), and the Program of Basic Research of the Ural Branch of Russian Academy of Sciences (12-P-4-1026).

Conflict of Interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Mikryukov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikryukov, V.S., Dulya, O.V. & Vorobeichik, E.L. Diversity and Spatial Structure of Soil Fungi and Arbuscular Mycorrhizal Fungi in Forest Litter Contaminated with Copper Smelter Emissions. Water Air Soil Pollut 226, 114 (2015). https://doi.org/10.1007/s11270-014-2244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2244-y

Keywords

Navigation