Skip to main content
Log in

Pattern Recognition on X-ray Fluorescence Records from Copenhagen Lake Sediments Using Principal Component Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Principal component analysis (PCA) was performed on chemical data of two sediment cores from an urban freshwater lake in Copenhagen, Denmark. X-ray fluorescence (XRF) core scanning provided the underlying datasets on 13 variables (Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Cd, and Pb). Principal component analysis helped to trace geochemical patterns and temporal trends in lake sedimentation. The PCA models explained more than 80 % of the original variation in the datasets using only two or three principal components. The first principal component (PC1) was mostly associated with geogenic elements (Si, K, Fe, Rb) and characterized the content of minerogenic material in the sediment. In the case of both cores, PC2 was a good descriptor emphasized as the contamination component. It showed strong linkages with heavy metals (Cu, Zn, Pb), disclosing changing heavy-metal contamination trends across different depths. The sediments featured a temporal association with contaminant dominance. Lead contamination was superseded by zinc within the compound pattern which was linked to changing contamination sources over time. Principal component analysis was useful to visualize and interpret geochemical XRF data while being a straightforward method to extract contamination patterns in the data associated with temporal elemental trends in lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bhattacharya, P., Mukherjee, A. B., Jacks, G., & Nordqvist, S. (2002). Metal contamination at a wood preservation site: characterisation and experimental studies on remediation. Science of the Total Environment, 290, 165–180.

    Article  CAS  Google Scholar 

  • Borůvka, L., Oldřich, V., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128, 289–300.

    Article  Google Scholar 

  • Bro, R., & Smilde, A. K. (2014). Principle component analysis. Analytical Methods, 6, 2812–2831.

    Article  CAS  Google Scholar 

  • Bro, R., Acar, E., & Kolda, T. G. (2008). Resolving the sign ambiguity in the singular value decomposition. Journal of Chemometrics, 22, 135–140.

    Article  CAS  Google Scholar 

  • Chillrud, S. N., Bopp, R. F., Simpson, H. J., Ross, J. M., Shuster, E. L., Chaky, D. A., Walsh, D. C., Choy, C. C., Tolley, L.-R., & Yarme, A. (1999). Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environmental Science and Technology, 33, 657–662.

    Article  CAS  Google Scholar 

  • Comero, S., Locoro, G., Free, G., Vaccaro, S., De Capitani, L., & Gawlik, B. M. (2011). Characterisation of Alpine lake sediments using multivariate statistical techniques. Chemometrics and Intelligent Laboratory Systems, 107, 24–30.

    Article  CAS  Google Scholar 

  • Council, E. (1975). Council directive 75/442/EEC of 15 July 1975 on waste. Official Journal of the European Communities, L194, 39.

    Google Scholar 

  • Council, E. (1987). Council directive 87/416/EEC of 21 July 1987 amending directive 85/210/EEC on the approximation of the laws of the member states concerning the lead content of petrol. Official Journal of the European Communities, L225, 33.

    Google Scholar 

  • Cox Analytical Systems .(2011). ITRAX corescanner—unique multi-function scanner for core examinations. http://coxsys.se/wp-content/uploads/2009/03/itrax-core-scanner4.pdf. Accessed 04 June 2014.

  • Croudace, I. W., Rindby, A., & Rothwell, R. G. (2006). ITRAX: description and evaluation of a new multi-function X-ray scanner. Geological Society, London, Special Publications, 267, 51–63.

    Article  CAS  Google Scholar 

  • Crutzen, P. J. (2002). Geology of mankind. Nature, 415, 23.

    Article  CAS  Google Scholar 

  • Danish Ministry of Climate, Energy and Building. (2013). Smart grid strategy—the intelligent energy system of the future. http://www.kebmin.dk//klima-energi-bygningspolitik/dansk-klima-energi-bygningspolitik/energiforsyning-effektivitet/smart. Accessed 09 May 2014.

  • Davison, W. (1993). Iron and manganese in lakes. Earth-Science Reviews, 34, 119–163.

    Article  CAS  Google Scholar 

  • Eisma, D., & Irion, G. (1988). Suspended matter and sediment transport. In W. Salomons, B. L. Bayne, E. K. Duursma, & U. Förstner (Eds.), Pollution of the North Sea—an assessment (pp. 20–35). Berlin: Springer.

    Google Scholar 

  • Ellermann, T., Nøjgaard, J.K., Nordstrøm, C., Brandt, J., Christensen, J., Ketzel, M., & Jensen, S.S. (2012). The Danish air quality monitoring programme. Annual Summary for 2011. Scientific Report from DCE – Danish Centre for Environment and Energy, 37.

  • European Environment Agency (EEA) .(2014). Copenhagen beats Bristol and Frankfurt to win European Green Capital 2014. http://www.eea.europa.eu/highlights/copenhagen-beats-bristol-and-frankfurt. Accessed 22 April 2014.

  • Gredilla, A., Amigo, J. M., Fdez-Ortiz de Vallejuelo, S., de Diego, A., Bro, R., & Madariaga, J. M. (2012). Practical comparison of multivariate chemometric techniques for pattern recognition used in environmental monitoring. Analytical Methods, 4, 676–684.

    Article  CAS  Google Scholar 

  • Hallberg, R. O. (1991). Environmental implications of metal distribution in Baltic Sea sediments. Ambio, 20, 309–316.

    Google Scholar 

  • Hansson, S. V., Rydberg, J., Kylander, M., Gallagher, K., & Bindler, R. (2013). Evaluating paleoproxies for peat decomposition and their relationship to peat geochemistry. The Holocene, 23, 1666–1671.

    Article  Google Scholar 

  • Haworth, E. Y., & Lund, J. W. G. (1984). Lake sediments and environmental history—studies in paleolimnology and paleoecology in honour of Winifred tutin. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Kido, Y., Koshikawa, T., & Tada, R. (2006). Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Marine Geology, 229, 209–225.

    Article  CAS  Google Scholar 

  • Last, W. M., & Smol, J. P. (2004). Tracking environmental change using lake sediments—volume 1: basin analysis, coring, and chronological techniques. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Livingstone, D. A. (1955). A lightweight piston sampler for lake deposits. Ecology, 36, 137–139.

    Article  Google Scholar 

  • Löwenmark, L., Chen, H.-F., Yang, T.-N., Kylander, M., Yu, E.-F., Hsu, Y.-W., Lee, T.-Q., Song, S.-R., & Jarvis, S. (2011). Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40, 1250–1256.

    Article  Google Scholar 

  • Lyons, W. B., & Harmon, R. S. (2012). Why urban geochemistry? Elements, 8, 417–422.

    Article  Google Scholar 

  • Matys Grygar, T., Sedláček, J., Bábek, O., Nováková, T., Strnad, L., & Mihaljevič, M. (2012). Regional contamination of Moravia (South-Eastern Czech Republic): temporal shift of Pb and Zn loading in fluvial sediments. Water, Air, and Soil Pollution, 223, 739–753.

    Article  CAS  Google Scholar 

  • Molin Christensen, J., & Holst, E. (1988). Evaluation of blood lead levels in Danes for the period 1976–1987. Fresenius’ Zeitschrift für Analytische Chemie, 332, 710–713.

    Article  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311, 205–219.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279, 409–411.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Olsen, J., Björck, S., Leng, M. J., Gudmundsdóttir, E. R., Odgaard, B. V., Lutz, C. M., Kendrick, C. P., Andersen, T. J., & Seidenkrantz, M.-S. (2010). Lacustrine evidence of Holocene environmental change from three Faroese lakes: a multiproxy XRF and stable isotope study. Quaternary Science Reviews, 29, 2764–2780.

    Article  Google Scholar 

  • Passos, E. A., Alves, J. C., dos Santos, I. S., Alves, J. D. P. H., Garcia, C. A. B., & Spinola Costa, A. C. (2010). Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principle components analysis. Microchemical Journal, 96, 50–57.

    Article  CAS  Google Scholar 

  • Quinn, G. P., & Keough, M. J. (2013). Experimental design and data analysis for biologists. New York: Cambridge University Press.

    Google Scholar 

  • Reid, M. K., & Spencer, K. L. (2009). Use of principle components analysis (PCA) on estuarine sediment datasets: the effect of data pre-treatment. Environmental Pollution, 157, 2275–2281.

    Article  CAS  Google Scholar 

  • Renberg, I. (1986). Concentration and annual accumulation values of heavy metals in lake sediments: their significance in studies of the history of heavy metal pollution. Hydrobiologia, 143, 379–385.

    Article  CAS  Google Scholar 

  • Selig, U., & Leipe, T. (2008). Stratigraphy of nutrients and metals in sediment profiles of two dimictic lakes in North-Eastern Germany. Environmental Geology, 55, 1099–1107.

    Article  CAS  Google Scholar 

  • Skaarup, B., Westerbeek Dahl, B., & Thorning Christensen, P. (1998). The fortifications of Copenhagen: a guide to 900 years of fortifications history. Copenhagen: National Forest and Nature Agency, Danish Ministry of the Environment and Energy.

    Google Scholar 

  • Smol, J. P. (2008). Pollution of lakes and rivers—a paleoenvironmental perspective (2nd ed.). Malden: Blackwell Publishing.

    Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 23, 2198–2213.

    Article  CAS  Google Scholar 

  • Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. (2007) Influence of water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry, Geophysics, Geosystems, 8. doi:10.1029/2006GC001393.

  • Vasskog, K., Paasche, Ø., Nesje, A., Boyle, J. F., & Birks, H. J. B. (2012). A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quaternary Research, 77, 192–204.

    Article  Google Scholar 

  • von Storch, H., Costa-Cabral, M., Hagner, C., Feser, F., Pacyna, J., Pacyna, E., & Kolb, S. (2003). Four decades of gasoline lead emission and control policies in Europe: a retrospective assessment. Science of the Total Environment, 311, 151–176.

    Article  Google Scholar 

  • Walraven, N., van Os, B. J. H., Klaver, G. Th., Middelburg, J. J., & Davies, G. R. (2014). Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: a Pb isotope study. Science of the Total Environment, 484, 185–195.

    Article  CAS  Google Scholar 

  • Weltje, G. J., & Tjallingii, R. (2008). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theroy and application. Earth and Planetary Science Letters, 274, 423–438.

    Article  CAS  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principle component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    Article  CAS  Google Scholar 

  • Zitko, V. (1994). Principle components analysis in the evaluation of environmental data. Marine Pollution Bulletin, 28, 718–722.

    Article  CAS  Google Scholar 

  • Zupan, M., Einax, J. W., Kraft, J., Lobnik, F., & Hudnik, V. (2000). Chemometric characterization of soil and plant pollution: part 1: multivariate data analysis and geostatistical determination of relationship and spatial structure of inorganic contaminants in soil. Environmental Science and Pollution Research, 7, 89–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We hereby thank Barbara Wohlfarth, Malin Kylander, and Ludvig Löwenmark for supporting and assisting XRF core scanning at the Department of Geological Science, Stockholm University, Stockholm, Sweden. The comments and suggestions of an anonymous reviewer were greatly appreciated.

The project is financed by Geocenter Denmark.

Conflict of Interest

No conflict of interest exists for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Schreiber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreiber, N., Garcia, E., Kroon, A. et al. Pattern Recognition on X-ray Fluorescence Records from Copenhagen Lake Sediments Using Principal Component Analysis. Water Air Soil Pollut 225, 2221 (2014). https://doi.org/10.1007/s11270-014-2221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2221-5

Keywords

Navigation