Skip to main content
Log in

Evidence for the Accumulation and Steady-State Persistence of E. coli in Subtropical Drainage Basin Sediments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

While the presence of fecal indicator bacteria such as Escherichia coli in urban stormwater has been widely documented, their occurrence and persistence in sediments are not as well understood. Recent investigations suggest that E. coli can accumulate in drainage basin sediments and act as a fecal bacterial reservoir within a watershed. We investigate the prevalence of E. coli populations in a tidal creek stormwater catchment and examine their interaction with overlying stormwater under wet and dry weather conditions. Two rain events are sampled more intensively with samples collected prior to, during, and after rainfall to profile bacteria in each matrix throughout a storm. Results of profile sampling and estimates of sediment resuspension provide evidence for E. coli accumulation during dry conditions and entrainment in overlying waters during storm conditions. Profile results suggest the occurrence of steady-state E. coli populations in drainage basin sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman, D., & Weisberg, S. B. (2003). Relationship between rainfall and beach bacterial concentrations on Santa Monica Bay beaches. Journal of Water and Health, 01, 85–89.

    Google Scholar 

  • Ahn, J. H., Grant, S. B., Surbeck, C. Q., DiGiacomo, P. M., Nezlin, N. P., & Jiang, S. (2005). Coastal water quality impacts of stormwater runoff from an urban watershed in Southern California. Environmental Science and Technology, 39(16), 5940–5953.

    Article  CAS  Google Scholar 

  • ASTM D2974-07a. Standard test methods for moisture, ash, and organic matter of peat and other organic soils. Method D 2974–00. West Conshohocken: American Society for Testing and Materials.

  • Athayde, D.N., Shelley, P.E., Driscoll, E.D., Gaboury, D., Boyd, G. (1983). Results of the Nationwide Urban Runoff Program, NTIS PB84-185545, US Environmental Protection Agency.

  • Badgley, B. D., Thomas, F. I. M., & Harwood, V. J. (2011). Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environmental Microbiology, 13(4), 932–942.

    Article  CAS  Google Scholar 

  • Badin, A., Faure, P., Bedell, J., & Delolme, C. (2008). Distribution of organic pollutants and natural organic matter in urban storm water sediments as a function of grain size. Science of the Total Environment, 403(1–3), 178–187.

    Article  CAS  Google Scholar 

  • Barbier, E. B., Hackler, S. D., Kennedy, C., Koch, W. E., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193.

    Article  Google Scholar 

  • Boehm, A. B., Griffith, J., McGee, C., Edge, T. A., Solo-Gabriele, H. M., Whitman, R., Cao, Y., Getrich, M., Jay, J. A., Ferguson, D., Goodwin, K. D., Lee, C. M., Madison, M., & Weisberg, S. B. (2009). Faecal indicator bacteria enumeration in beach sand: a comparison study of extraction methods in medium to coarse sands. Journal of Applied Microbiology, 107(5), 1740–1750.

    Article  CAS  Google Scholar 

  • Byappanahalli, M., & Fujioka, R. (2004). Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Science and Technology, 50(1), 27–32.

    CAS  Google Scholar 

  • Byappanahalli, M.N., Whitman, R.L., Shively, D.A., Sadowsky, M.J., & Ishii, S. (2006). Population structure, persistencem and seasonality of autochthonous of Escherichia coli in temperate, coastal forest soils from a Great Lakes watershed. Environmental Microbiology, 8(3), 504–513.

  • Chandran, A., Varghese, S., Kandeler, E., Thomas, A., Hatha, M., & Mazumder, A. (2011). An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. International Journal of Hygiene and Environmental Health, 214(3), 258–264.

    Article  Google Scholar 

  • Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2004). Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. Journal of Applied Microbiology, 96(5), 922–930.

    Article  CAS  Google Scholar 

  • Davies, C. M., & Bavor, H. J. (2000). The fate of stormwater associated bacteria in constructed wetland and water pollution control pond systems. Journal of Applied Microbiology, 89(2), 349–360.

    Article  CAS  Google Scholar 

  • Davies, C. M., Long, J. A. H., Donald, M., & Ashbolt, N. J. (1995). Survival of fecal microorganisms in marine and freshwater sediments. Applied Environmental Microbiology, 61(5), 1888–1896.

    CAS  Google Scholar 

  • DiDonato, G. T., Stewart, J. R., Sanger, D. M., Robinson, B. J., Thompson, B. C., Holland, A. F., & Van Dolah, R. F. (2009). Effects of changing land use on the microbial water quality of tidal creeks. Marine Pollution Bulletin, 58(1), 97–106.

    Article  CAS  Google Scholar 

  • Evison, L. M. (1988). Comparative studies on the survival of indicator organisms and pathogens in fresh and seawater. Water Science and Technology, 20(11–12), 309–315.

    CAS  Google Scholar 

  • Friedlander, R. S., Vlamakis, H., Kim, P., Khan, M., Kolter, R., & Aizeberg, J. (2013). Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proceedings of the National Academy of Sciences, 110(14), 5624–5629.

    Article  CAS  Google Scholar 

  • Fries, J., Characklis, G., & Noble, R. (2006). Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, N.C. Journal of Environmental Engineering, 134(10), 1338–1345.

    Article  Google Scholar 

  • Fujioka, R. S., Hashimoto, H. H., Siwak, E. B., & Young, R. (1981). Effect of sunlight on survival of indicator bacteria in seawater. Applied Environmental Microbiology, 41(3), 690–696.

    CAS  Google Scholar 

  • Geldreich, E. E., Best, L. C., Kenner, B. A., & Van Donsel, D. J. (1968). The bacteriological aspects of stormwater pollution. Journal of the Water Pollution Control Federation, 40(11), 1861–1968.

    CAS  Google Scholar 

  • Guimaraes, W.B. (1995). Water quality in the Withers Swash Basin, with emphasis on enteric bacteria, Myrtle Beach, South Carolina, 1991–1993. US Geological Survey Water Resources Investigations Report 95–4120.

  • Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R., & Rose, J. B. (2005). Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Applied Environmental Microbiology, 71(6), 3163–3170.

    Article  CAS  Google Scholar 

  • Jamieson, R. C., Joy, D. M., Lee, H., Kostaschuck, R., & Gordon, R. J. (2003). Persistence of enteric bacteria in alluvial streams. Journal of Environmental Engineering and Science, 3(3), 203–212.

    Article  Google Scholar 

  • Jamieson, R. C., Joy, D. M., Lee, H., Kostaschuck, R., & Gorrdon, R. J. (2005). Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Research, 39(12), 2665–2675.

    Article  CAS  Google Scholar 

  • Jeng, H., England, A. J., & Bradford, H. B. (2005). Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health Part A Toxic/Hazard Substances and Environmental Engineering, 40(40), 779–791.

    Article  CAS  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Schachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69(3), 373–386.

    Article  Google Scholar 

  • Korajkic, A., Wanjugi, P., & Harwood, V. J. (2013). Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Applied and Environmental Microbiology, 79(17), 5329–5337.

    Article  CAS  Google Scholar 

  • Lemarchand, K., & Lebaron, P. (2003). Occurrence of Salmonella spp. and Cryptosporidium spp. in a French coastal watershed: relationship with fecal indicators. FEMS Microbiology Letters, 218(1), 203–209.

    Article  CAS  Google Scholar 

  • Lord, B. N. (1987). Nonpoint source pollution from highway stormwater runoff. Science of the Total Environment, 59, 437–446.

    Article  CAS  Google Scholar 

  • Lu, J., Domingo, J. W. S., Lamendella, R., Edge, T., & Hill, S. (2008). Phylogenetic diversity and molecular detection of bacteria in gull feces. Applied and Environmental Microbiology, 75(13), 3969–3976.

    Article  Google Scholar 

  • Makepeace, D. K., Smith, D. W., & Stanley, S. J. (1995). Urban stormwater quality: summary of contaminant data. Critical Reviews in Environmental Science and Technology, 25(2), 93–139.

    Article  CAS  Google Scholar 

  • Mallin, M. A., Williams, K. E., Esham, E. C., & Lowe, R. P. (2000). Effect of human development on bacteriological water quality in coastal watersheds. Ecological Applications, 10(4), 1047–1056.

    Article  Google Scholar 

  • McClaine, J.W., & Ford, R.M. (2002). Characterizating the adhesion of motile and nonmontile Escherichia coli to a glass surface using a parallel-plate flow chamber. Biotechnology and Bioengineering, 78(2), 179–189.

  • Mehta, A., Hayter, E., Parker, W., Krone, R., & Teeter, A. (1989). Cohesive sediment transport. I: Process description. Journal of Hydraulic Engineering, 115, 1076–1093.

    Article  Google Scholar 

  • Noble, R. T., & Fuhrman, J. A. (2001). Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: low correlation to bacterial indicator levels. Hydrobiologia, 460(1–3), 175–184.

    Article  CAS  Google Scholar 

  • Partheniades, E. (1965). Erosion and deposition of cohesive soils. J Hydraul Eng-ASCE, 91, 105–139.

    Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–65.

    Article  Google Scholar 

  • Radke D.B. (2005). Bottom-material samples. In: US Geological Survey TWRI book 9 (version 1.1), Handbooks for water-resource investigations (pp. 13–15).

  • Ram, J. L., Thompson, B., Turner, C., Nechvatal, J. M., Sheehan, H., & Bobrin, J. (2007). Identification of pets and raccoons as sources of bacterial contamination of urban storm sewers using a sequence-based bacterial source tracking method. Water Research, 41(16), 3605–3614.

    Article  CAS  Google Scholar 

  • Schillinger, J. E., & Gannon, J. J. (1985). Bacterial adsorption and suspended particles in urban stormwater. Journal Water Pollution Control Federation, 57(5), 384–389.

    CAS  Google Scholar 

  • Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Hydrodynamics Laboratory Publ. No. 167, W. P. Ott, and J. C. van Uchelen, trans., US Dept. of Agr., Soil Conservation Service Cooperative Laboratory, California Institute of Technology, Pasadena, California

  • Solo-Gabriele, H. M., Wolfert, M. A., Desmarais, T. R., & Palmer, C. J. (2000). Sources of Escherichia coli in coastal subtropical environments. Applied Environmental Microbiology, 66(1), 230–237.

    Article  CAS  Google Scholar 

  • Tolleson, A. R., Wooten, J. M., Jenson, J. R., & Schill, S. (1998). Urban runoff analysis and evaluation in the coastal zone of Myrtle Beach. SC: Geometrics Inc.

    Google Scholar 

  • US Environmental Protection Agency (1992). NPDES Stormwater Guidance Document. EPA 833-B-92-001.

  • US Environmental Protection Agency (1998). Water quality conditions in the United States: a profile from the 1998 National Water Quality Inventory Report to Congress, Office of Water, Washington, DC.

  • Wade, T. J., Pai, N., Eisenberg, J. N. S., & Colford, J. M. (2003). Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environmental Health Perspectives, 111(8), 1102–1109.

    Article  Google Scholar 

  • Wahl, M. H., McKellar, H. N., & Williams, T. M. (1997). Patterns of nutrient loading in forested and urbanized coastal streams. Journal of Experimental Marine Biology and Ecology, 213(1), 111–131.

    Article  CAS  Google Scholar 

  • Weiskel, P. K., Howes, B. L., & Heufelder, G. R. (1996). Coliform contamination of a coastal embayment: sources and transport pathways. Environmental Science and Technology, 30(6), 1872–1881.

    Article  CAS  Google Scholar 

  • Winfield, D. M., & Groisman, E. A. (2003). Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Applied Environmental Microbiology, 69(7), 3687–3694.

    Article  CAS  Google Scholar 

  • Winter, T.C., Harvey, J.W., Franke, O.L., Alley, W.M. (1998) Ground water and surface water; a single resource. US Geologic Survey Circular 1139.

  • Zmirou, D., Pena, L., Ledrans, M., & Letertre, A. (2003). Risks associated with the microbiological quality of bodies of fresh and marine water used for recreational purposes: summary estimates based on published epidemiological studies. Archives of Environmental Health, 58(11), 703–711.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a US Army Corp of Engineers, Planning Assistance to the States grant (W912HN-10-2-0001), the M.K. Pentecost Ecology Fund, and the Coastal Carolina University Research Council. We would like to thank the City of Myrtle Beach Engineering and Stormwater departments for valuable information and maps regarding stormwater drainage, as well as providing access to weather station data. For guidance and assistance in sample collection and analysis, we thank the staff of the Coastal Carolina University Environmental Quality Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Trapp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtis, K., Trapp, J.M. Evidence for the Accumulation and Steady-State Persistence of E. coli in Subtropical Drainage Basin Sediments. Water Air Soil Pollut 225, 2179 (2014). https://doi.org/10.1007/s11270-014-2179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2179-3

Keywords

Navigation