Skip to main content
Log in

Exploring the Cr(VI) Phytoremediation Potential of Cosmos bipinnatus

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Seedlings of Cosmos bipinnatus were cultured in vitro for 30 days on modified Murashige–Skoog medium supplemented with four different concentrations of hexavalent chromium (Cr(VI); 0.0–2.0 mM). Seed germination occurred after 7 days of culture, but was significantly lower when cultured in 2.0 mM Cr(VI) than when cultured without Cr(VI) in the medium. Seedlings were able to survive heavy metal stress condition, irrespectively of the Cr(VI) concentration used. The seedlings showed two metal tolerance mechanisms that were dependent on chromium concentration: (1) metal exclusion at 0.0–0.5 mM and (2) metal accumulation at 1.0–2.0 mM. Regarding the latter mechanism, seedlings showed metal accumulation values considered as characteristic of hyperaccumulator species. The highest bioaccumulation in dry tissue was of 5443 mg Cr kg−1 in shoot and 4767 mg Cr kg−1 in root for seedlings cultured with 2.0 mM of Cr(VI). These results indicated that substantial Cr translocation from the roots unto shoots took place (translocation factor > 1.14) associated to a bioaccumulation factor for Cr(VI) greater than 98.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bah, A. M., Dai, H., Zhao, J., Sun, H., Cao, F., Zhang, G., & Wu, F. (2011). Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biological Trace Element Research, 142(1), 77–92. Springer 1.307.

    Article  CAS  Google Scholar 

  • Baker, H. G. (1974). The evolution of weeds. Annual Review of Ecology and Systematics, 5, 1–24.

    Article  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1–4), 643–654.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. (1987). Metal tolerance. New Phytologist, 106(1), 93–111.

    CAS  Google Scholar 

  • Barceló, J., Poschenrieder, C., & Gunse, B. (1986). Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. Journal of Experimental Botany, 37(2), 178–187.

    Article  Google Scholar 

  • Bautista, Z. F. (1999). Introducción al estudio de la contaminación del suelo por metales pesados. Yucatán: México. Universidad Autónoma de Yucatán.

    Google Scholar 

  • Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101(5), 5862–5867.

    Article  Google Scholar 

  • Carrillo-Castañeda, G., Juárez Muños, J., Peralta-Videa, J. R., Gómez, E., Tiemannb, K. J., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2002). Alfalfa growth promotion by bacteria grown under iron limiting conditions. Advances in Environmental Research, 6(3), 391–399.

    Article  Google Scholar 

  • Chaney, R. L., Li, Y. M., Brown, S. L., Homer, F. A., Malik, M., Angle, J. S., Baker, A. J. M., Reeves, R. D., & Chin, M. (2000). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 129–123). Florida: Lewis.

    Google Scholar 

  • Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109(1), 69–74.

    Article  CAS  Google Scholar 

  • Chen, F., Wu, F. B., Dong, J., Vincze, E., Zhang, G., Wang, F., Huang, Y., & Wei, K. (2007). Cadmium translocation and accumulation in developing barley grains. Planta, 227(1), 223–232.

    Article  CAS  Google Scholar 

  • Espinosa, G. F. J., & Sarukhán, J. (1997). Manual de malezas del Valle de México. Mexico, D. F.: UNAM - Fondo de Cultura Económica.

    Google Scholar 

  • Henson, I. E., Mahalakshmi, V., Bidinger, F. R., & Alagars-Wamy, G. (1981). Genotypic variation in pearl millet (Pennisetum americanum L.) Leeke in the ability to accumulate abscisic acid in response on water stress. Journal of Experimental Botany, 32(130), 899–910.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31(1), 109–120.

    Article  CAS  Google Scholar 

  • Lefevre, I., Marchal, G., Correal, E., Zanuzzi, A., & Lutts, S. (2009). Variation in response to heavy metals during vegetative growth in Dorycnium pentaphyllum Scop. Plant Growth Regulator, 59(1), 1–11.

    Article  CAS  Google Scholar 

  • Llamas, A., Ulrich, C. I., & Sanz, A. (2008). Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiology and Biochemistry, 46(10), 905–910.

    Article  CAS  Google Scholar 

  • Mazhoudi, S., Chaoudi, A., Ghorbal, M. H., & Elferjani, E. (1997). Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science, 127(2), 129–137.

    Article  CAS  Google Scholar 

  • Mellen, J. J. (2008). Phytoremediation of heavy metals using Amaranthus dubius. Durban: Durban University of Technology. Dissertation.

    Google Scholar 

  • Morikawa, H., & Takahashi, M. (2000). Remediation of soil, water and air by naturally occurring and transgenic plants. Gamma Field Symposia, 39, 81–104.

    Google Scholar 

  • Niu, Z. X., Sun, L. N., Sun, T. H., Li, Y. S., & Wang, H. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Sciences, 19(8), 961–967.

    Article  CAS  Google Scholar 

  • Peer, W. A., Baxter, I. R., Richards, E. L., Freeman, J. L., & Murphy, A. S. (2005). Phytoremediation and hyperaccumulator plants. In M. J. Tamás & E. Martinoia (Eds.), Molecular biology of metal homeostasis and detoxification: topics in current genetics (Vol. 14, pp. 299–340). Berlin: Springer.

    Chapter  Google Scholar 

  • Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gómez, E., Arteaga, S., Rascon, E., & Parsons, J. G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727–734.

    CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56(1), 15–39.

    Article  CAS  Google Scholar 

  • Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., & Barceló, J. (2013). Do toxic ions induce hormesis in plants? Plant Science, 212, 15–25.

    Article  CAS  Google Scholar 

  • Reynoso-Cuevas, L., Gallegos-Martínez, M. E., Cruz-Sosa, F., & Gutiérrez-Rojas, M. (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource Technology, 99(14), 6379–6385.

    Article  CAS  Google Scholar 

  • Rodríguez-Elizalde, M. A., Delgado-Alvarado, A., González-Chávez, M. C., Carrillo-González, R., Mejía-Muñoz, J. M., & Vargas-Hernández, M. (2010). Emergence and growth of ornamental plants on substrates polluted with mine residues. Interciencia, 35(1), 26–32.

    Google Scholar 

  • Salt, D. E. (2001). Nickel hyperaccumulation in Thlaspi goesigense: a scientific travelogue. In Vitro Cellular and Developmental Biology – Plant, 37(3), 326–329.

    Article  CAS  Google Scholar 

  • Scoccianti, V., Crinelli, R., Tirillini, B., Mancinelli, V., & Speranza, A. (2006). Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere, 64(10), 1695–1703.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.

    Article  CAS  Google Scholar 

  • Skeffington, R. A., Shewry, P. R., & Peterson, P. J. (1976). Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta, 132(3), 209–214.

    Article  CAS  Google Scholar 

  • Wang, P. F., Zhang, S. H., Wang, C., & Han, N. N. (2012). Cr bioaccumulation and its effects on nutrient elements uptake and oxidative response in Corbicula fluminea exposed to hexavalent chromium. Advanced Materials Research, 343–344, 975–980.

    Google Scholar 

  • Wu, F. B., Dong, J., Qian, Q. Q., & Zhang, G. P. (2005). Subcellular distribution and chemical form of Cd and Cd–Zn interaction in different barley genotypes. Chemosphere, 60(10), 1437–1446.

    Article  CAS  Google Scholar 

  • Zhang, X., Liu, J., Wang, D., Zhu, Y., Hu, C., & Sun, J. (2009). Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz. Bulletin of Environmental Contamination and Toxicology, 82(3), 358–362.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249(1), 37–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Buendía-González wishes to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the partial financing of this work through project grant “Biorremediación para la conservación de la biodiversidad,” and also LB-G thanks the Universidad Autónoma del Estado de México for the partial financing of this project through grant 3422/2013CHT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Orozco-Villafuerte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago-Cruz, M.A., Villagrán-Vargas, E., Velázquez-Rodríguez, A.S. et al. Exploring the Cr(VI) Phytoremediation Potential of Cosmos bipinnatus . Water Air Soil Pollut 225, 2166 (2014). https://doi.org/10.1007/s11270-014-2166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2166-8

Keywords

Navigation