Skip to main content
Log in

Structural Influence on Photooxidative Degradation of Halogenated Phenols

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The influence of structure on degradation of five halogenated phenols (XPs) by UV/H2O2 process was investigated. The combined influence of type or number of substituents and UV/H2O2 process parameters (pH and [H2O2]) on the degradation kinetics of 2-fluorophenol (2-FP), 2-chlorophenol (2-CP), 2-bromophenol (2-BP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) was studied using modified miscellaneous 33 full factorial design and response surface modeling (RSM). Studied XPs obey first-order degradation kinetics within the investigated range of process parameters. Determined degradation rate constants (k obs) were correlated with process and structural parameters by the quadratic polynomial models. Analysis of variance (ANOVA) demonstrated RSM models’ accuracy and showed that, in addition to pH and [H2O2], model terms related with the pollutant structure are highly influential. k obs of mono-XPs follow the decreasing order 2-FP, 2-CP, and 2-BP, while CPs follow the decreasing order 2-CP, 2,4-DCP, and 2,4,6-TCP. Biodegradability (biochemical oxygen demand (BOD)5/chemical oxygen demand (COD)) and toxicity (TU) were evaluated prior to the treatment and at the reference time intervals. The observed differences are correlated with the structural characteristics of studied XPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, C. D., Scanian, P. A., & Secrist, N. D. (1994). Oxidation and biodegradability enhancement of 1,4-dioxane using hydrogen peroxide and ozone. Environmental Science and Technology, 28, 1812–1818.

    Article  CAS  Google Scholar 

  • Alnaizy, R., & Akgerman, A. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4(3), 233–244.

    Article  Google Scholar 

  • Beltran, F. J. (2003). Ozone-UV radiation-hydrogen peroxide oxidation technologies. In M. A. Tarr (Ed.), Chemical degradation methods for wastes and pollutants, environmental and industrial applications (pp. 1–75). New York: Marcel Dekker.

    Google Scholar 

  • Benitez, F. J., Beltran-Heredia, J., Acero, J. L., & Rubio, F. J. (2000). Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere, 41, 1271–1277.

    Article  CAS  Google Scholar 

  • Benitez, F. J., Beltran-Heredia, J., Acero, J. L., & Rubio, F. J. (2001). Oxidation of several chlorophenolic derivatives by UV irradiation and hydroxyl radicals. Journal of Chemical Technology and Biotechnology, 76, 312–320.

    Article  CAS  Google Scholar 

  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: B Statistical Methodology, 26, 211–246.

    Google Scholar 

  • Burrows, H. D., Canle, L. M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B: Biology, 67, 71–108.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–586.

    Article  CAS  Google Scholar 

  • Calza, P., Massolino, C., & Pelizzetti, E. (2008a). Photo-induced transformation of hexaconazole and dimethomorph over TiO2 suspension. Journal of Photochemistry and Photobiology A: Chemistry, 200, 356–363.

    Article  CAS  Google Scholar 

  • Calza, P., Massolino, C., Pelizzetti, E., & Minero, C. (2008b). Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Science of the Total Environment, 398(1–3), 196–202.

    Article  CAS  Google Scholar 

  • ChemSpider (2013). Search and share chemistry. http://www.chemspider.com/Chemical-Structure.9326.html?rid=f87e5bbe-2a3d-4333-8380-0dea4d837c93). Accessed 30 Nov 2013.

  • Connors, K. A. (1990). Chemical kinetics: the study of reaction rates in solution. New York: Wiley-VCH.

    Google Scholar 

  • Cunningham, W. P., Cunningham, M. A., & Saigo, B. (2005). Environmental science, a global concern. New York: Mc Graw-Hill Education.

    Google Scholar 

  • Czaplicka, M. (2006). Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials, B134, 45–59.

    Article  Google Scholar 

  • European Commission. (2001). EC Decision 2455/2001/EC of the European Parliament and of the Council of November 20, 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC (L 331 of 15-12-2001)

  • EEC. (1993). Commission Directive 93/67/EEC of 20 July 1993 laying down the principles for the assessment of risks to man and the environment of substances notified in accordance with Council Directive 67/548/EEC. Official Journal of European Communities, 227, 9–17.

    Google Scholar 

  • EPA, July 2002, http://www.scorecard.org

  • Farré, M. J., Franch, M. I., Ayllón, J. A., Peral, J., & Domènech, X. (2007). Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photocatalytic ozonation. Desalination, 211, 22–33.

    Article  Google Scholar 

  • Gaya, U. I., Abdullah, A. H., Zainal, Z., & Hussein, M. Z. (2010). Photocatalytic degradation of 2,4-dichlorophenol in irradiated aqueous ZnO suspension. International Journal of Chemistry, 2(1), 180–193.

    Article  CAS  Google Scholar 

  • Getoff, N., & Solar, S. (1986). Radiolysis and pulse radiolysis of chlorinated phenols in aqueous solutions. Radiation Physics and Chemistry, 28, 443–450.

    CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8, 501–551.

    Article  CAS  Google Scholar 

  • International Standard ISO 11348-3 (1998). Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test).

  • Jennings, V. L. K., Rayner-Brandes, M. H., & Bird, D. J. (2001). Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Research, 35, 3448–3456.

    Article  CAS  Google Scholar 

  • Kralik, P., Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2010). Degradation of chlorinated hydrocarbons by UV/H2O2: the application of experimental design and kinetic modeling approach. Chemical Engineering Journal, 158, 154–166.

    Article  CAS  Google Scholar 

  • Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2006). Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chemical Engineering Journal, 123(3), 127–137.

    Article  CAS  Google Scholar 

  • Kusic, H., Rasulev, B., Leszczynska, D., Leszczynski, J., & Koprivanac, N. (2009). Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study. Chemosphere, 75(8), 1128–1134.

    Article  CAS  Google Scholar 

  • Kusic, H., Juretic, D., Koprivanac, N., Marin, V., & Loncaric Bozic, A. (2011). Photooxidation processes for an azo dye in aqueous media: modeling of degradation kinetic and ecological parameters evaluation. Journal of Hazardous Materials, 185, 1558–1568.

    Article  CAS  Google Scholar 

  • Kusic, H., Koprivanac, N., Papic, S., & Loncaric Bozic, A. (2012). Influence of substituent type and position on photooxidation of phenolic compounds: response surface methodology approach. Journal of Photochemistry and Photobiology A: Chemistry, 242, 1–12.

    Article  CAS  Google Scholar 

  • Liao, H., & Reitberger, T. (2013). Generation of free OHaq radicals by black light illumination of Degussa (Evonik) P25 TiO2 aqueous suspensions. Catalysts, 3, 418–443.

    Article  CAS  Google Scholar 

  • Mantzavinos, D., & Psillakis, E. (2004). Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology, 79, 431–454.

    Article  CAS  Google Scholar 

  • Metz, D. H., Meyer, M., Dotson, A., Beerendonk, E., & Dionysiou, D. D. (2011). The effect of UV/H2O2 treatment on disinfection by-product formation potential under simulated distribution system conditions. Water Research, 45, 3969–3980.

    Article  CAS  Google Scholar 

  • Myer, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiment. New York: Wiley.

    Google Scholar 

  • National Library of Medicine HDSB Database, Toxicology Data Network (TOXNET) - Accessed on November 29, 2013 (http://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+7648)

  • Nicole, I., De Laat, J., Dore, M., Duguet, J. P., & Bonnel, C. (1990). Utilisation du rayonnement ultraviolet dans le traitement des eaux: mesure du flux photonique par actinometrie chimique au peroxyde d’hydrogene (Use of U.V. radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry). Water Research, 24(2), 157–168.

    Article  CAS  Google Scholar 

  • Nogueira, R. F. P., Oliveira, M. C., & Paterlini, W. C. (2005). Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, 66(1), 86–91.

    Article  CAS  Google Scholar 

  • Parsons, S. (2004). Advanced oxidation processes for water and wastewater treatment. London: IWA Publishing.

    Google Scholar 

  • Peller, J., & Kamat, P. V. (2005). Radiolytic transformations of chlorinated phenols and chlorinated phenoxyacetic acids. Journal of Physical Chemistry A, 109, 9528–9535.

    Article  CAS  Google Scholar 

  • Pera-Titus, M., Garcia-Molina, V., Banos, M. A., Gimenez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47, 219–256.

    Article  CAS  Google Scholar 

  • Pichat, P. (2003). Photocatalytic degradation of pollutants in water and air: basic concepts and applications. In M. A. Tarr (Ed.), Chemical degradation methods for wastes and pollutants, environmental and industrial applications (pp. 77–119). New York: Marcel Dekker Inc.

    Google Scholar 

  • Reineke, N., Biselli, S., Franke, S., Francke, W., Heinzel, N., Huhnerfuss, H., et al. (2006). Brominated indoles and phenols in marine sediment and water extracts from the North and Baltic seas—concentrations and effects. Archives of Environmental Contamination and Toxicology, 51, 186–196.

    Article  CAS  Google Scholar 

  • Roig, B., Gonzalez, C., & Thomas, O. (2003). Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochimica Acta: A Molecular and Biomolecular Spectroscopy, 59(2), 303–307.

    Article  CAS  Google Scholar 

  • Rosal, R., Palomares, I. R., Boltes, K., Fernández-Pińas, F., Leganés, F., & Petre, A. (2010). Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere, 81, 288–293.

    Article  CAS  Google Scholar 

  • Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76, 301–315.

    Article  CAS  Google Scholar 

  • Sim, W.-J., Lee, S.-H., Lee, I.-S., Choi, S.-D., & Oha, J.-E. (2009). Distribution and formation of chlorophenols and bromophenols in marine and riverine environments. Chemosphere, 77, 552–558.

    Article  CAS  Google Scholar 

  • Sinclair, G. M., Paton, G. I., Meharg, A. A., & Killham, K. (1999). Lux-biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols. FEMS Microbiology Letters, 174, 273–278.

    Article  CAS  Google Scholar 

  • Stat-Ease (2008). Multifactor RSM tutorial (part 2—optimization), design-expert software version 7.1.5 user’s guide.

  • Steenken, S., & Neta, P. (2003). Transient phenoxyl radicals: formation and properties in aqueous solutions. In Z. Rappoport (Ed.), The chemistry of phenols (Vol. Part 2, pp. 1107–1152). England: John Wiley and Sons Ltd.

    Chapter  Google Scholar 

  • Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122, 178–192.

    Article  CAS  Google Scholar 

  • Zak S. (2008). Problem of correction of the chemical oxygen demand values determined in wastewaters treated by methods with hydrogen peroxide. Proceedings of 17. CEC ECOpole’08, Piechowice, Poland, pp. 409–414.

Download references

Acknowledgments

We gratefully acknowledge the financial support from the University of Zagreb, Republic of Croatia (Project No. 110005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hrvoje Kusic or Ana Loncaric Bozic.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juretic, D., Puric, J., Kusic, H. et al. Structural Influence on Photooxidative Degradation of Halogenated Phenols. Water Air Soil Pollut 225, 2143 (2014). https://doi.org/10.1007/s11270-014-2143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2143-2

Keywords

Navigation