Skip to main content
Log in

Removal of Phosphate from Aqueous Solutions Using a New Modified Bentonite-Derived Hydrogel

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A bentonite-based hydrogel was chemically modified to prepare a new effective adsorbent for the removal of phosphate from aqueous solutions using batch equilibrium experiments at the laboratory scale. The efficiency of the phosphate adsorption by the modified adsorbents followed the order: Al-Fe-hydrogel > Al-hydrogel > Fe-hydrogel > Rewoquate surfactant-hydrogel ≅ Irasoft surfactant-hydrogel > raw hydrogel. The amount of Fe and Al, as determined in proportion to the cation exchange capacity (CEC) of the hydrogel, was the most important parameter for optimizing the modification process by pillaring solutions. The results showed that the phosphate adsorption was rapid and pH independent. The removal of phosphate reached up to 99 % at the optimized conditions. The adsorption data were well fitted by Langmuir and Freundlich models. According to the Langmuir model, the maximum adsorption capacity of the phosphate on the Fe-Al-hydrogel was 14.29 mg L−1. The removal of phosphate from an urban wastewater using the modified adsorbent was more than 99 %. The Fe-Al-hydrogel selectively adsorbed the phosphate from the solutions containing sulphate, bicarbonate, chloride, and nitrate. Based on the obtained results, the synthesized adsorbent could be used effectively to decontaminate the phosphate polluted water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, E. M. (2013). Hydrogel: preparation, characterization, and applications. Journal of Advanced Research. doi:10.1016/j.jare.2013.07.006.

    Google Scholar 

  • Bashour, I. I., & Sayegh, A. H. (2007). Methods of analysis for soils of arid and semi-arid regions (American University of Beirut, Lebanon). Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Biswas, B. K., Inoue, K., Ghimire, K. N., Ohta, S., Harada, H., Ohto, K., et al. (2007). The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. Journal of Colloid and Interface Science, 312(2), 214–223. doi:10.1016/j.jcis.2007.03.072.

    Article  CAS  Google Scholar 

  • Borgnino, L., Avena, M. J., & De Pauli, C. P. (2009). Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341(1–3), 46–52. doi:10.1016/j.colsurfa.2009.03.037.

    Article  CAS  Google Scholar 

  • Borgnino, L., Giacomelli, C. E., Avena, M. J., & De Pauli, C. P. (2010). Phosphate adsorbed on Fe(III) modified montmorillonite: surface complexation studied by ATR-FTIR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353(2–3), 238–244. doi:10.1016/j.colsurfa.2009.11.022.

    Article  CAS  Google Scholar 

  • Bulut, Y., Akçay, G., Elma, D., & Serhatlı, I. E. (2009). Synthesis of clay-based superabsorbent composite and its sorption capability. Journal of Hazardous Materials, 171(1–3), 717–723.

    Article  CAS  Google Scholar 

  • Cheng, X., Huang, X., Wang, X., Zhao, B., Chen, A., & Sun, D. (2009). Phosphate adsorption from sewage sludge filtrate using zinc-aluminum layered double hydroxides. Journal of Hazardous Materials, 169(1–3), 958–964. doi:10.1016/j.jhazmat.2009.04.052.

    Article  CAS  Google Scholar 

  • Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., & Hirotsu, T. (2006). Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide. Journal of Colloid and Interface Science, 297(2), 426–433.

    Article  CAS  Google Scholar 

  • Chubar, N. I., Kanibolotskyy, V. A., Strelko, V. V., Gallios, G. G., Samanidou, V. F., Shaposhnikova, T. O., et al. (2005). Adsorption of phosphate ions on novel inorganic ion exchangers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255(1–3), 55–63. doi:10.1016/j.colsurfa.2004.12.015.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for the Examination of Water and Wastewater (20 ed.). Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Dable, P. J. M. R., Adjoumani, Y. J., Yao, B., & Ado, G. (2008). Wastewater dephosphorization using crude clays. Environmental Science Technology, 5(1), 35–42.

    CAS  Google Scholar 

  • Dai, J., Yang, H., Yan, H., Shangguan, Y., Zheng, Q., & Cheng, R. (2011). Phosphate adsorption from aqueous solutions by disused adsorbents: Chitosan hydrogel beads after the removal of copper(II). Chemical Engineering Journal, 166(3), 970–977. doi:10.1016/j.cej.2010.11.085.

    Article  CAS  Google Scholar 

  • Darvishi, Z., & Morsali, A. (2010). Synthesis and characterization of Nano-bentonite by sonochemical method. Ultrasonics Sonochemistry, 18(1), 238–242.

    Article  Google Scholar 

  • De Vicente, I., Huang, P., Andersen, B., & Jensen, H. S. (2008). Phosphate adsorption by fresh and aged aluminum hydroxide. Consequense for lake restoration. Environmental Science Technology, 42(17), 6650–6655.

    Article  Google Scholar 

  • Dimirkou, A., Ioannou, A., & Doula, M. (2002). Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite-hematite systems. Advances in Colloid and Interface Science, 97(1–3), 37–60. doi:10.1016/S0001-8686(01)00046-X.

    Article  CAS  Google Scholar 

  • Evans, T. D., & Johnston, A. E. (2004). Phosphorus and crop nutrition: principles and practice. In E. Valsami-Jones (Ed.), Phosphorus in environmental technology (pp. 93–120). Cornwall, UK: IWA.

    Google Scholar 

  • Fontes, M. P. F., & Weed, S. B. (1996). Phosphate adsorption by clays from Brazilian Oxisols: relationships with specific surface area and mineralogy. Geoderma, 72(1–2), 37–51.

    Article  CAS  Google Scholar 

  • Gan, F., Zhou, J., Wang, H., Du, C., & Chen, X. (2009). Removal of phosphate from aqueous solution by thermally treated natural palygorskite. Water Research, 43(11), 2907–2915. doi:10.1016/j.watres.2009.03.051.

    Article  CAS  Google Scholar 

  • González-Pradas, E., Villafranca-Sánchez, M., & Gallego-Campo, A. (1992). Effects of experimental variables on phosphate adsorption on bentonite. Journal of Chemical Technology and Biotechnology, 54(3), 291–295. doi:10.1002/jctb.280540313.

    Article  Google Scholar 

  • Gu, L., Xu, J., Lv, L., Liu, B., Zhang, H., Yu, X., et al. (2011). Dissolved organic nitrogen (DON) adsorption by using Al-pillared bentonite. Desalination, 269(1–3), 206–213. doi:10.1016/j.desal.2010.10.063.

    Article  CAS  Google Scholar 

  • Haghseresht, F., Wang, S., & Do, D. D. (2009). A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 46(4), 369–375. doi:10.1016/j.clay.2009.09.009.

    Article  CAS  Google Scholar 

  • Hamdi, N., & Srasra, E. (2012). Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. Journal of Environmental Sciences, 24(4), 617–623. doi:10.1016/S1001-0742(11)60791-2.

    Article  CAS  Google Scholar 

  • Jing, G., Wang, L., Yu, H., Amer, W. A., & Zhang, L. (2013). Recent progress on study of hybrid hydrogels for water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 416(0), 86–94. doi:10.1016/j.colsurfa.2012.09.043.

    Article  Google Scholar 

  • Kamiyango, M. W., Masamba, W. R. L., Sajidu, S. M. I., & Fabiano, E. (2009). Phosphate removal from aqueous solutions using kaolinite obtained from Linthipe, Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 34(13–16), 850–856. doi:10.1016/j.pce.2009.07.012.

    Article  Google Scholar 

  • Kasama, T., Watanabe, Y., Yamada, H., & Murakami, T. (2004). Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH. Applied Clay Science, 25(3–4), 167–177. doi:10.1016/j.clay.2003.09.005.

    Article  CAS  Google Scholar 

  • Khadhraoui, M., Watanabe, T., & Kuroda, M. (2002). The effect of the physical structure of a porous Ca-based sorbent on its phosphorus removal capacity. Water Research, 36, 3711–3718.

    Article  CAS  Google Scholar 

  • Kubilay, Ş., Gürkan, R., Savran, A., & Şahan, T. (2007). Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1), 41–51. doi:10.1007/s10450-007-9003-y.

    Article  CAS  Google Scholar 

  • Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., et al. (2006). Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous Materials, 137(1), 374–383. doi:10.1016/j.jhazmat.2006.02.011.

    Article  CAS  Google Scholar 

  • Li, H., Ru, J., Yin, W., Liu, X., Wang, J., & Zhang, W. (2009). Removal of phosphate from polluted water by lanthanum doped vesuvianite. Journal of Hazardous Materials, 168(1), 326–330. doi:10.1016/j.jhazmat.2009.02.025.

    Article  CAS  Google Scholar 

  • Li, J., Li, Y., & Meng, Q. (2010). Removal of nitrate by zero-valent iron and pillared bentonite. Journal of Hazardous Materials, 174(1–3), 188–193. doi:10.1016/j.jhazmat.2009.09.035.

    Article  CAS  Google Scholar 

  • Liu, J., Zhou, Q., Chen, J., Zhang, L., & Chang, N. (2013). Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber. Chemical Engineering Journal, 215–216(0), 859–867. doi:10.1016/j.cej.2012.11.067.

    Article  Google Scholar 

  • Ma, J., & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. Journal of Hazardous Materials, 136(3), 982–988. doi:10.1016/j.jhazmat.2006.01.046.

    Article  CAS  Google Scholar 

  • Ma, J., Qi, J., Yao, C., Cui, B., Zhang, T., & Li, D. (2012). A novel bentonite-based adsorbent for anionic pollutant removal from water. Chemical Engineering Journal, 200–202(0), 97–103. doi:10.1016/j.cej.2012.06.014.

    Article  Google Scholar 

  • Morse, G. K., Brett, S. W., Guy, J. A., & Lester, J. N. (1998). Review: phosphorus removal and recovery technologies. The Science of The Total Environment, 212(1), 69–81. doi:10.1016/S0048-9697(97)00332-X.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Prathap, K. (2005). Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of phosphate from water. Journal of Hazardous Materials, 123(1–3), 127–134. doi:10.1016/j.jhazmat.2005.03.037.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359–365. doi:10.1016/j.jcis.2004.08.015.

    Article  CAS  Google Scholar 

  • Oh, Y.-M., Hesterberg, D. L., & Nelson, P. V. (1999). Comparison of phosphate adsorption on clay minerals for soilless root media. Communications in Soil Science and Plant Analysis, 30(5&6), 747–756.

    Article  CAS  Google Scholar 

  • Peleka, E. N., & Deliyanni, E. A. (2009). Adsorptive removal of phosphates from aqueous solutions. Desalination, 245(1–3), 357–371. doi:10.1016/j.desal.2008.04.050.

    Article  CAS  Google Scholar 

  • Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Research, 43, 2419–2430.

    Article  CAS  Google Scholar 

  • Shirsath, S. R., Hage, A. P., Zhou, M., Sonawane, S. H., & Ashokkumar, M. (2011). Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination, 281(0), 429–437. doi:10.1016/j.desal.2011.08.031.

    Article  CAS  Google Scholar 

  • Tian, S., Jiang, P., Ning, P., & Su, Y. (2009). Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical Engineering Journal, 151(1–3), 141–148. doi:10.1016/j.cej.2009.02.006.

    Article  CAS  Google Scholar 

  • Xiong, J. B., & Mahmood, Q. (2010). Adsorptive removal of phosphate from aqueous media by peat. Desalination, 259(1–3), 59–64. doi:10.1016/j.desal.2010.04.035.

    Article  CAS  Google Scholar 

  • Yan, L., Xu, Y., Yu, H. Q., Xin, X. D., Wei, Q., & Du, B. (2010). Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. Journal of Hazardous Materials, 179(1–3), 244–250. doi:10.1016/j.jhazmat.2010.02.086.

    Article  CAS  Google Scholar 

  • Yang, S., Zhao, Y., Chen, R., Feng, C., Zhang, Z., Lei, Z., et al. (2013). A novel tablet porous material developed as adsorbent for phosphate removal and recycling. Journal of Colloid and Interface Science, 396, 197–204. doi:10.1016/j.jcis.2012.12.077.

    Google Scholar 

  • Yan-kui, T., Zhang-fa, T., Guang-tao, W., Zhong-min, L., & Da-wen, L. (2006). Removal of phosphate from aqueous solution with modified bentonite. The Chinese Journal of Process Engineering, 6(6), 197–200.

    Google Scholar 

  • Yuan, P., He, H., Bergaya, F., Wu, D., Zhou, Q., & Zhu, J. (2006). Synthesis and characterization of delaminated iron-pillared clay with meso–microporous structure. Microporous and Mesoporous Materials, 88(1–3), 8–15. doi:10. 1016/j.micromeso.2005.08.022.

    Article  CAS  Google Scholar 

  • Zamparas, M., Drosos, M., Georgiou, Y., Deligiannakis, Y., & Zacharias, I. (2013). A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters. Chemical Engineering Journal, 225, 43–51.

    Article  CAS  Google Scholar 

  • Zhang, G., Liu, H., Liu, R., & Qu, J. (2009). Removal of phosphate from water by a Fe-Mn binary oxide adsorbent. Journal of Colloid and Interface Science, 335(2), 168–174. doi:10.1016/j.jcis.2009.03.019.

    Article  CAS  Google Scholar 

  • Zhang, J., Shen, Z., Shan, W., Chen, Z., Mei, Z., Lei, Y., et al. (2010). Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material. Journal of Environmental Sciences, 22(4), 507–511. doi:10.1016/S1001-0742(09)60141-8.

    Article  CAS  Google Scholar 

  • Zhao, D. L., Feng, S. J., Chen, C. L., Chen, S. H., Xu, D., & Wang, X. K. (2008). Adsorption of thorium(IV) on MX-80 bentonite: effect of pH, ionic strength and temperature. Applied Clay Science, 41, 17–23.

    Article  CAS  Google Scholar 

  • Zhao, Y., Wang, J., Luan, Z., Peng, X., Liang, Z., & Shi, L. (2009). Removal of phosphate from aqueous solution by red mud using a factorial design. Journal of Hazardous Materials, 165(1–3), 1193–1199. doi:10.1016/j.jhazmat.2008.10.114.

    Article  CAS  Google Scholar 

  • Zheng, H., Liu, D., Zheng, Y., Liang, S., & Liu, Z. (2009). Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials, 167, 141–147.

    Article  CAS  Google Scholar 

  • Zhu, L., & Zhu, R. (2007). Simultaneous sorption of organic compounds and phosphate to inorganic–organic bentonites from water. Separation and Purification Technology, 54(1), 71–76. doi:10.1016/j.seppur.2006.08.009.

    Article  CAS  Google Scholar 

  • Zhu, R., Zhu, L., & Zhu, J. (2007). Simultaneous sorption of aqueous phenanthrene and phosphate onto bentonites modified with AlCl13 and CTMAB. Frontiers of Environmental Science & Engineering in China, 1(1), 79–82.

    Article  Google Scholar 

  • Zhu, M. X., Ding, K. Y., Xu, S. H., & Jiang, X. (2009a). Adsorption of phosphate on hydroxyaluminum- and hydroxyiron-montmorillonite complexes. Journal of Hazardous Materials, 165(1–3), 645–651. doi:10.1016/j.jhazmat.2008.10.035.

    Article  CAS  Google Scholar 

  • Zhu, R., Zhu, L., Zhu, J., Ge, F., & Wang, T. (2009b). Sorption of naphthalene and phosphate to the CTMAB-Al13 intercalated bentonites. Journal of Hazardous Materials, 168(2–3), 1590–1594. doi:10.1016/j.jhazmat.2009.03.057.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Council of Isfahan University of Technology (IUT) for supporting this work and Prof. H. Shariatmadari from IUT for his scientific comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourollah Mirghaffari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahni, S.Y., Mirghaffari, N., Rezaei, B. et al. Removal of Phosphate from Aqueous Solutions Using a New Modified Bentonite-Derived Hydrogel. Water Air Soil Pollut 225, 1916 (2014). https://doi.org/10.1007/s11270-014-1916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1916-y

Keywords

Navigation