Skip to main content

Advertisement

Log in

Response of the Archaeal Community to Simulated Petroleum Hydrocarbon Contamination in Marine and Hypersaline Ecosystems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Petroleum hydrocarbons are among the most important contaminants in aquatic ecosystems, but the effects of different petroleum components on the archaeal communities in these environments are still poorly investigated. Therefore, the effects of representative alkanes, polycyclic aromatic hydrocarbons and crude oil on archaeal communities from marine (Massambaba Beach) and hypersaline waters (Vermelha Lagoon) from the Massambaba Environmental Protection Area, Rio de Janeiro, Brazil, were examined in this study. Hydrocarbon contamination was simulated in vitro, and the resulting microcosms were temporally analyzed (4, 12 and 32 days after contamination) using molecular methods. DNA and RNA extractions were followed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses and by the further molecular identification of selected DGGE bands. Archaeal communities could not be detected in the marine microcosms after contamination with the different hydrocarbons. In contrast, they were detected by DNA- and RNA-based methods in hypersaline water. Dendrogram analyses of PCR-DGGE showed that the archaeal communities in the hypersaline water-derived microcosms selected for by the addition of heptadecane, naphthalene or crude oil differed from the natural ones observed before the hydrocarbon contaminations. Principal coordinate analysis of the DGGE patterns showed an important effect of incubation time on the archaeal communities. A total of 103 DGGE bands were identified, and phylogenetic analysis showed that 84.4 % and 15.5 % of these sequences were associated with the Euryarchaeota and Crenarchaeota groups, respectively. Most of the sequences obtained were related to uncultivated archaea. Using redundancy analysis, the response of archaeal communities to the type of hydrocarbon contamination used could also be observed in the hypersaline water-derived microcosms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Mailem, D. M., Sorkhoh, N. A., Al-Awadhi, H., Eliyas, M., & Radwan, S. S. (2010). Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles, 14(3), 321–328.

    Article  CAS  Google Scholar 

  • Al-Mailem, D. M., Eliyas, M., & Radwan, S. S. (2012). Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles, 16(5), 751–758.

    Article  CAS  Google Scholar 

  • Anderson, R. T., & Lovley, D. R. (2000). Hexadecane decay by methanogenesis. Nature, 404(6779), 722–723.

    Article  CAS  Google Scholar 

  • Andrei, A. Ş., Banciu, H. L., & Oren, A. (2012). Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiology Letters, 330(1), 1–9.

    Article  CAS  Google Scholar 

  • Atlas, R. M., & Hazen, T. C. (2011). Oil biodegradation and bioremediation: a tale of the two worst spills in US history. Environmental Science & Technology, 45, 6709–6715.

    Article  CAS  Google Scholar 

  • Auguet, J. C., Barberan, A., & Casamayor, E. O. (2010). Global ecological patterns in uncultured Archaea. ISME Journal, 4(2), 182–190.

    Article  Google Scholar 

  • Bano, N., Ruffin, S., Ranson, B., & Hollibaught, J. T. (2004). Phylogenetic composition of arctic ocean archaeal assemblages and comparison with Antarctic assemblages. Applied and Environmental Microbiology, 70, 781–789.

    Article  CAS  Google Scholar 

  • Barbiére, E. B. (1985). Condições climáticas dominantes na porção oriental da lagoa de Araruama (RJ) e suas implicações na diversidade do teor de salinidade. In Caderno de Ciências da Terra (Vol. 59, 35 p). SP, Brazil: Universidade de São Paulo.

    Google Scholar 

  • Bonfá, M. R., Grossman, M. J., Mellado, E., & Durrant, L. R. (2011). Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere, 84(11), 1671–1676.

    Article  Google Scholar 

  • Chang, W., Um, Y., & Holoman, T. R. (2006). Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis. Biotechnology Letters, 28(6), 425–430.

    Article  CAS  Google Scholar 

  • dos Santos, H. F., Cury, J. C., Do Carmo, F. L., Dos Santos, A. L., Tiedje, J., Van Elsas, J. D., et al. (2011). Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One, 6(3), e16943. doi:10.1371/journal.pone.0016943.

    Article  Google Scholar 

  • EPA 8015C. (2000). Nonhalogenated organics using GC/FID. EPA, revision 3, 33p.

  • Erdoğmuş, S. F., Mutlu, B., Korcan, S. E., Güven, K., & Konuk, M. (2013). Aromatic hydrocarbon degradation by halophilic Archaea isolated from Çamalt Saltern, Turkey. Water Air and Soil Pollution, 224, 1449. doi:10.1007/s11270-013-1449-9.

    Article  Google Scholar 

  • Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred: II. Error probabilities. Genome Research, 8, 186–194.

    Article  CAS  Google Scholar 

  • Grant, W. D. (2004). Life at low water activity, review. Philosophical Transactions of the Royal Society Biological Sciences, 359(1448), 1249–1267.

    Article  CAS  Google Scholar 

  • Hardoim, C. C., Costa, R., Araújo, F. V., Hajdu, E., Peixoto, R., Lins, U., et al. (2009). Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Applied and Environmental Microbiology, 75(10), 3331–3343.

    Article  CAS  Google Scholar 

  • Jurelevicius, D., Korenblum, E., Casella, R., Vital, R. L., & Seldin, L. (2010). Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. Journal of Microbiology and Biotechnology, 20(5), 862–870.

    Article  CAS  Google Scholar 

  • Jurelevicius, D., Alvarez, V. M., Marques, J. M., Lima, L. R., Dias, F. D., & Seldin, L. (2013). Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine and hypersaline water-containing microcosms. Applied and Environmental Microbiology, 79(19), 5927–5935.

    Article  CAS  Google Scholar 

  • Kim, J. N., Kim, B. S., Kim, S. J., & Cerniglia, C. E. (2012). Effects of crude oil, dispersant, and oil-dispersant mixtures on human fecal microbiota in an in vitro culture system. MBio doi:pii: e00376-12. 10.1128/mBio.00376-12.

  • Le Borgne, S., Paniagua, D., & Vazquez-Duhalt, R. (2008). Biodegradation of organic pollutants by halophilic Bacteria and Archaea. Journal of Molecular Microbiology and Biotechnology, 15, 74–92.

    Article  Google Scholar 

  • Margesin, R., & Schinner, F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5, 73–83.

    Article  CAS  Google Scholar 

  • McCune, B., & Mefford, M. J. (2011). PC-ORD Multivariate analysis of ecological data, Version 6.0 MjM Software, Gleneden Beach, Oregon, USA.

  • Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology, 8(4), 151–156.

    Article  CAS  Google Scholar 

  • Redmond, M. C., & Valentine, D. L. (2012). Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20292–20297.

    Article  CAS  Google Scholar 

  • Röling, W. F., de Brito Couto, I. R., Swannell, R. P., & Head, I. M. (2004). Response of Archaeal communities in beach sediments to spilled oil and bioremediation. Applied and Environmental Microbiology, 70(5), 2614–2620.

    Article  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  • Taketani, R. G., Franco, N. O., Rosado, A. S., & van Elsas, J. D. (2010). Microbial community response to a simulated hydrocarbon spill in mangrove sediments. Journal of Microbiology, 48(1), 7–15.

    Article  Google Scholar 

  • Tapilatu, Y. H., Grossi, V., Acquaviva, M., Militon, C., Bertrand, J. C., & Cuny, P. (2010). Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles, 14(2), 225–231.

    Article  CAS  Google Scholar 

  • Teske, A., & Sørensen, K. B. (2008). Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME Journal, 2(1), 3–18.

    Article  CAS  Google Scholar 

  • Valentine, D. L. (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology, 5, 316–323.

    Article  CAS  Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported through grants from the National Research Council of Brazil (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Seldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurelevicius, D., de Almeida Couto, C.R., Alvarez, V.M. et al. Response of the Archaeal Community to Simulated Petroleum Hydrocarbon Contamination in Marine and Hypersaline Ecosystems. Water Air Soil Pollut 225, 1871 (2014). https://doi.org/10.1007/s11270-014-1871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1871-7

Keywords

Navigation