Skip to main content
Log in

Enhanced Mineralization of Gaseous Organic Pollutant by Photo-Oxidation Using Au-Doped TiO2/MCM-41

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The synthesis, characterization, and photocatalytic evaluation of titania-loaded MCM-41 with and without Au doping are reported in the present study. The samples were characterized by powder XRD, TEM, low temperature N2 adsorption/desorption, UV–Vis, and FTIR. UV-induced vapor-phase photo-oxidation of acetone was used as a probe reaction to study the role of Au in mineralization of volatile organic compounds (VOCs), viz. acetone at different concentrations. The doping of Au in titania-loaded MCM-41 resulted in the decrease of BET surface area, total pore volume, and average pore size. UV–Vis diffuse reflectance spectra of Au-doped titania-loaded MCM-41 showed the red shift in their absorption bands compared to titania-loaded MCM-41. The activity of mineralization of acetone by photocatalysis for 2 % Au-doped titania-loaded MCM-41 was found to be ∼1.6 times higher than titania-loaded MCM-41. The presence of cocatalytic nanosized gold might be responsible for their enhanced activity on account of the delayed recombination of electron/hole pair. Although, almost complete mineralization of acetone was observed irrespective of the initial concentration of acetone in air (up to 3.72 mol%) by all the catalysts, 2 wt.% Au-doped titania-loaded MCM-41 has shown the most enhanced activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Awate, S. V., Jacob, N. E., Deshpande, S. S., Gaydhankar, T. R., & Belhekar, A. A. (2005). Synthesis, characterization and photo catalytic degradation of aqueous eosin over Cr containing Ti/MCM-41 and SiO2–TiO2 catalysts using visible light. Journal of Molecular Catalysis A: Chemical, 226, 149–154.

    Article  CAS  Google Scholar 

  • Awate, S.V., Belhekar, A. A., Bhagwat, S. V., Kumar, R., Gupta, N. M. (2008). Effect of gold dispersion on the photocatalytic activity of mesoporous titania for the vapor-phase oxidation of acetone. International Journal of Photoenergy, 2008, 1–13.

  • Awate, S. V., Sahu, R. K., Kadgaonkar, M. D., Kumar, R., & Gupta, N. M. (2009). Photocatalytic mineralization of benzene over gold containing titania nanotubes: role of adsorbed water and nanosize gold crystallites. Catalysis Today, 141, 144–151.

    Article  CAS  Google Scholar 

  • Beck, J. S., Vartuli, J. C., Roth, W. T., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., et al. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of American Chemical Society, 114, 10834–10843.

    Article  CAS  Google Scholar 

  • Berenjian, A., Chan, N., & Malmiri, H. J. (2012). Volatile organic compounds removal methods: a review. American Journal of Biochemistry and Biotechnology, 8, 220–229.

    Article  CAS  Google Scholar 

  • Bhattacharya, K., Varma, S., Kumar, D., Tripati, A. K., & Gupta, N. M. (2005). Vapor phase photo-oxidation of methanol over nano-size titanium dioxide clusters in MCM-41 host material part 2: catalytic properties and surface transient species. Journal of Nanoscience and Nanotechnology, 5, 797–805.

    Article  Google Scholar 

  • Boccuzzi, F., & Chiorino, A. (2000). FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. Journal of Physical Chemistry B, 104, 5414–5416.

    Article  CAS  Google Scholar 

  • Brinker, C. J. (1996). Porous inorganic materials. Current Opinion in Solid State and Material Science, 1, 798–805.

    Article  CAS  Google Scholar 

  • Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177.

    Article  CAS  Google Scholar 

  • Chapus, T., Tuel, A., Taarit, Y., & Naccache, C. (1994). Synthesis and characterization of chromium silicalite-1. Zeolites, 14, 349–355.

    Article  CAS  Google Scholar 

  • Chen, M. S., & Goodman, D. W. (2008). Catalytically active gold on ordered titania supports. Chemical Society Reviews, 37, 1860–1870.

    Article  CAS  Google Scholar 

  • Chen, J., Ollis, D. F., Rulkens, W. H., & Bruning, H. (1999). Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 in suspension. Part I. Photocatalytic activity and pH influence. Water Resources, 33, 661–668.

    CAS  Google Scholar 

  • Chen, Y., Li, D., Chen, J., Wang, J., Meng, S., Xian, J., et al. (2013). A promising new photocatalyst CdSnO3 · 3H2O for air purification under ambient condition. Applied Catalysis B: Environmental, 129, 403–408.

    Article  CAS  Google Scholar 

  • Cojocarua, B., Neat, S., Sacaliuc-Pârvulescua, E., Lévyb, F., Pârvulescua, V. I., & Garcia, H. (2011). Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering. Applied Catalysis B: Environmental, 107, 140–149.

    Article  Google Scholar 

  • Corma, A., Martinez, A., & Martinez-Soria, V. (1997). Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts. Journal of Catalysis, 169, 480–489.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  • Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Review, 1, 1–21.

    Article  CAS  Google Scholar 

  • Galhenage, R. P., Yan, H., Tenney, S. A., Park, N., Henkelman, G., Albrecht, P., et al. (2013). Understanding the nucleation and growth of metals on TiO2: CO compared to Au, Ni and Pt. Journal of Physical Chemistry C, 117, 7191–7201.

    Article  CAS  Google Scholar 

  • Handa, M., Lee, Y., Shibusawa, M., Tokumura, M., & Kawase, Y. (2013). Removal of VOCs in waste gas by the photo-Fenton reaction: effects of dosage of Fenton reagents on degradation of toluene gas in a bubble column. Journal of Chemical Technology and Biotechnology, 88, 88–97.

    Article  CAS  Google Scholar 

  • Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36, 153–156.

    Article  CAS  Google Scholar 

  • He, Y., Wang, Y., Zhao, L., Wu, X., & Wu, Y. (2011). Preparation, characterization and activity evaluation of V2O5–LaVO4 composites under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 337, 61–67.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Jo, W. K., & Kang, H. J. (2013). Polyacrylonitrile-TiO2 fibers for control of gaseous aromatic compounds. Industrial & Engineering Chemistry Research, 52, 4475–4483.

    Article  CAS  Google Scholar 

  • Juang, L. C., Wang, C. C., & Lee, C. K. (2006). Adsorption of basic dyes onto MCM-41. Chemosphere, 64, 1920–1928.

    Article  CAS  Google Scholar 

  • Kim, S. B., & Hong, S. C. (2002). Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B: Environment, 35, 305–315.

    Article  Google Scholar 

  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712.

    Article  CAS  Google Scholar 

  • Kruk, M., Jariniec, M., Sakamoto, Y., Terasaki, O., Ryoo, R., & Ko, C. H. (2000). Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction. Journal of Physical Chemistry B, 104, 292–301.

    Article  CAS  Google Scholar 

  • Kudo, A., Kato, H., & Tsuji, I. (2004). Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 33, 1534–1539.

    Article  CAS  Google Scholar 

  • Laha, S. C., & Kumar, R. (2002). Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti- and V-MCM-41 and their catalytic properties in oxidation reactions. Microporous and Mesoporous Materials, 53, 163–177.

    Article  CAS  Google Scholar 

  • Liang, W., Li, J., & Jin, Y. (2012). Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Building and Environment, 51, 345–350.

    Article  Google Scholar 

  • Linsebigler, A. L., Lu, G., & Yates, J. T., Jr. (1995). Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758.

    Article  CAS  Google Scholar 

  • Luan, Z., & Kevan, L. (1997). Electron spin resonance and diffuse reflectance ultraviolet–visible spectroscopies of vanadium immobilized at surface titanium centers of titanosilicate mesoporous TiMCM-41 molecular sieves. Journal of Physical Chemistry B Materials, 101, 2020–2027.

    Article  CAS  Google Scholar 

  • Malwadkar, S. S., Gholap, R. S., Awate, S. V., & Gupta, N. M. (2009). Physico-chemical, photo-catalytic and O2-adsorption properties of TiO2 nanotubes coated with gold nanoparticles. Journal of Photochemistry and Photobiology A, 203, 24–31.

    Article  CAS  Google Scholar 

  • Morey, M. S., O’Brien, S., Schwarz, S., & Stucky, G. D. (2000). Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chemistry of Materials, 12, 898–911.

    Article  CAS  Google Scholar 

  • Moulis, F., & Krysa, J. (2013). Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO2 layer in a closed-loop reactor. Catalysis Today, 209, 153–158.

    Article  CAS  Google Scholar 

  • Obee, T. N., & Brown, R. T. (1995). TiO2photocatalysis for indoor air applications: effects of humidity and trace concentration levels on the oxidation rates of formaldehyde, toluene, 1, 3-butadiene. Environmental Science and Technology, 29, 1223–1231.

    Article  CAS  Google Scholar 

  • Sasaki, M., Osada, M., Sugimoto, N., Inagaki, S., Fukushima, Y., Fukuoka, A., et al. (1998). Novel templating fabrication of nano-structured Pt clusters and wires in the ordered cylindrical mesopores of FSM-16 and their unique properties in catalysis and magnetism. Microporous and Mesoporous Materials, 21, 597–606.

    Article  CAS  Google Scholar 

  • Song, S., Yang, X., Zhang, Y., Zhang, F., Ding, J., Bao, J., et al. (2012). Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Progress in Natural Science: Materials International, 22, 639–643.

    Article  Google Scholar 

  • Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., & Anpo, M. (2007). Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: effect of hydrophobicity of zeolites. Journal of Catalysis, 246, 235–240.

    Article  CAS  Google Scholar 

  • Valden, M., Lai, X., & Goodman, D. W. (1998). Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 281, 1647–1650.

    Article  CAS  Google Scholar 

  • Van der meule, T., Mattson, A., & Österlund, L. (2007). A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2nanoparticles: role of surface intermediates. Journal of Catalysis, 251, 131–144.

    Article  Google Scholar 

  • Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2002). Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chemistry of Materials, 14, 1657–1664.

    Article  CAS  Google Scholar 

  • Xu, H., Vanamu, G., Nie, Z., Konishi, H., Yeredla, R., Phillips, J., Wang, Y., (2006). Photocatalytic oxidation of a volatile organic component of acetaldehyde using titanium oxide nanotubes. Journal of Nanomaterials, 1–8, Article ID 78902.

  • Yan, J., Wu, G., Li, L., & Cao, X. (2013). Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics, 15, 10978–10988.

    Article  CAS  Google Scholar 

  • Yang, C. M., Kalwei, M., Schuth, F., & Chao, K. (2003). Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation. Journal of Applied Catalysis A, 254, 289–296.

    Article  CAS  Google Scholar 

  • Yu, J. G., Yu, J. C., Ho, W. K., Leung, M. K. P., Cheng, B., Zhang, G. K., et al. (2003). Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania. Applied Catalysis A: General, 255, 309–320.

    Article  CAS  Google Scholar 

  • Zhang, Q., Gao, L., & Guo, J. (2000). Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B: Environment, 26, 207–215.

    Google Scholar 

  • Zhou, M., Yu, J., Cheng, B., & Yu, H. (2005). Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Materials Chemistry and Physics, 93, 159–163.

    Article  CAS  Google Scholar 

  • Zou, T., Xie, C., Liu, Y., Zhang, S., Zou, Z., & Zhang, S. (2013). Full mineralization of toluene by photocatalytic degradation with porous TiO2/SiC nanocomposite film. Journal of Alloys and Compounds, 552, 504–510.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhana V. Awate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangale, N.P., Belhekar, A.A., Kale, K.B. et al. Enhanced Mineralization of Gaseous Organic Pollutant by Photo-Oxidation Using Au-Doped TiO2/MCM-41. Water Air Soil Pollut 225, 1847 (2014). https://doi.org/10.1007/s11270-013-1847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1847-z

Keywords

Navigation