Skip to main content
Log in

Critical Loads of Acid Deposition for Wilderness Lakes in the Sierra Nevada (California) Estimated by the Steady-State Water Chemistry Model

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Major ion chemistry (2000–2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (mean specific conductance = 8.0 μS cm−1) and characterized by low acid neutralizing capacity (ANC; mean = 56.8 μeq L−1). Two variants of the SSWC model were employed: (1) one model used the F-factor and (2) the alternate model used empirical estimates of atmospheric deposition and mineral weathering rates. A comparison between the results from both model variants resulted in a nearly 1:1 slope and an R 2 value of 0.98, suggesting that the deposition and mineral weathering rates used were appropriate. Using an ANClimit of 10 μeq L−1, both models predicted a median critical load value of 149 eq ha−1 year−1 of H+ for granitic catchments. Median exceedances for the empirical approach and F-factor approach were −81 and −77 eq ha−1 year−1, respectively. Based on the F-factor and empirical models, 36 (17 %) and 34 (16 %) lakes exceeded their critical loads for acid deposition. Our analyses suggest that high elevation lakes in the Sierra Nevada have not fully recovered from the effects of acid deposition despite substantial improvement in air quality since the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aherne, J., Kelly-Quinn, M., & Farrell, E. P. (2002). A survey of lakes in the Republic of Ireland: hydrochemical characteristics and acid sensitivity. Ambio, 31(6), 452–459.

    Google Scholar 

  • Baron, J. S. (2006). Hindcasting nitrogen deposition to determine an ecological critical load. Ecol Appl, 16, 433–439.

    Article  Google Scholar 

  • Baron, J. S., Driscoll, C. T., Stoddard, J. L., & Richer, E. E. (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience, 61, 602–613.

    Article  Google Scholar 

  • Bateman, P. C. (1992). Plutonism in the central part of the Sierra Nevada batholith, U. S. Geological Survey Professional Paper 1483, 186 pp.

  • Bateman, P. C., & Wahrhaftig, C. (1966). Geology of the Sierra Nevada. In E. H. Bailey (Ed.), Geology of Northern California, California Division of Mines and Geology Bulletin, 190, 107-172.

  • Berg, N. H., & Grant, S. (2002). Project LAKES—lake sampling protocols for synoptic surveys. USDA Forest Service Pacific Southwest Region. Unpublished report on file at the Pacific Southwest Research Station, Albany, CA, and the Stanislaus National Forest, Sonora, CA.

  • Berg, N. H., & Grant, S. (2004). Project LAKES—long term water quality monitoring and Zooplankton data collection protocol. USDA Forest Service Pacific Southwest Region. Unpublished report on file at the Pacific Southwest Research Station, Albany, CA, and the Stanislaus National Forest, Sonora, CA.

  • Berg, N. H., Gallegos, A., Dell, T., Frazier, J., Proctor, T., Sickman, J., et al. (2005). A screening procedure for identifying acid-sensitive lakes from catchment characteristics. Environ Monit Assess, 105, 285–307.

    Article  CAS  Google Scholar 

  • Bishop, K., Rapp, L., Kohler, S., & Korsman, T. (2008). Testing the steady-state water chemistry model predictions of pre-industrial lake pH with paleolimnological data from northern Sweden. Sci Total Environ, 407, 723–729.

    Article  CAS  Google Scholar 

  • Brakke, D. F., Henriksen, A., & Norton, S. A. (1990). A variable F-factor to explain changes in base cation concentrations as a function of strong acid deposition. Verh Internationalen Ver Limnol, 24, 146–149.

    Google Scholar 

  • Burns, D. A., Blett, T., Haeuber, R., & Pardo, L. H. (2008). Critical loads as a policy tool for protecting ecosystems from the effects of air pollutants. Front Ecol Environ, 6, 156–159.

    Article  Google Scholar 

  • CLAG (Critical Loads Advisory Group): “Critical loads of acid deposition for United Kingdom freshwaters, Report prepared at the request of the Department of Environment, 1995.

  • Clow, D. W., Mast, M. A., & Campbell, D. H. (1996). Controls on surface water chemistry in the upper Merced River Basin, Yosemite National Park, California. Hydrol Process, 10, 727–746.

    Article  Google Scholar 

  • Cox, P., Delao, A., Komorniczak, A., & Weller, R. (2008). The California Almanac of Emissions and Air Quality—2008 Edition. Sacramento, California: California Air Resources Board.

    Google Scholar 

  • Curtis, C. J., Allott, T. E. H., Battarbee, R. W., & Harriman, R. (1995). Validation of the UK critical loads for freshwaters: site selection and sensitivity. Water Air Soil Pollut, 85, 2467–2472.

    Article  CAS  Google Scholar 

  • De Vries, W. (1994). Average critical loads for nitrogen and sulfur and its use in acidification abatement policy in the Netherlands. Water Air Soil Pollut, 68, 399–434.

    Article  Google Scholar 

  • Dillon, P. J., & Molot, L. A. (1990). The role of ammonium and nitrate retention in the acidification of lakes and forested catchments. Biogeochemistry, 11(1), 23–43.

    Article  Google Scholar 

  • Dupont, J., Clair, T. A., Gagnon, C., Jeffries, D. S., Kahl, J. S., Nelson, S. J., et al. (2005). Estimation of critical loads of acidity for lakes in Northeastern United States and Eastern Canada. Environ Monit Assess, 109, 275–291.

    Article  CAS  Google Scholar 

  • Ericson, K., Migon, P., & Olvmo, M. (2005). Fractures and drainage in the granite mountainous area: a study from Sierra Nevada, USA. Geomorphology, 64(1–2), 97–116.

    Google Scholar 

  • Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., Geiser, L., et al. (2003). Ecological effects of nitrogen deposition in the Western United States. Bioscience, 53, 404–419.

    Article  Google Scholar 

  • Fenn, M. E., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. S. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environ Pollut, 155, 492–511.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Allen, E. B., Weiss, S. B., Jovan, S., Geiser, L., Tonnesen, G. S., et al. (2010). Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. J Environ Manag, 91, 2404–2423.

    Article  CAS  Google Scholar 

  • Fenn, M.E., Allen, E.B., Geiser, L.H. (2011). Mediterranean California. Chapter 13, in: Pardo, L.H., Robin-Abbott, M.J., Driscoll, C.T., (Eds.), Assessment of nitrogen deposition effects and empirical critical loads of nitrogen for ecoregions of the United States. Gen. Tech. Rep. NRS-80. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 291 p., pp 143-169.

  • Geiser, L. H., Jovan, S. E., Glavich, D. A., & Porter, M. K. (2010). Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA. Environ Pollut, 158, 2412–2421.

    Article  CAS  Google Scholar 

  • Harris, P., & Juggins, S. (2011). Estimating freshwater acidification critical load exceedance data for Great Britain using space-varying relationship models. Math Geosci, 43(265–292), 2011.

    Google Scholar 

  • Heard, A. M. (2013). Global change and mountain lakes: establishing nutrient criteria and critical loads for Sierra Nevada Lakes, Doctoral dissertation, University of California, Riverside, 160 pp.

  • Henriksen, A. (1995). Critical loads of acidity to surface waters—how important is the F-factor in the SSWC model. Water Air Soil Pollut, 85, 2437–2441.

    Article  CAS  Google Scholar 

  • Henriksen, A., & Posch, M. (2001). Steady-state models for calculating critical loads of acidity for surface waters. Water Air Soil Pollut Focus, 1, 375–398.

    Article  CAS  Google Scholar 

  • Henriksen, A., Kamari, J., Posch, M., & Wilander, A. (1992). Critical loads of acidity: Nordic surface waters. Ambio, 21(5), 356–363.

    Google Scholar 

  • Henriksen, A., Dillon, P. J., & Aherne, J. (2002). Critical loads of acidity for surface waters in south-central Ontario, Canada: regional application of the steady-state water chemistry (SSWC) model. Can J Fish Aquat Sci, 59, 1287–1295.

    Article  CAS  Google Scholar 

  • Hindar, A., Henriksen, A., Sandoy, S., & Romundstad, A. J. (1998). Critical load concept to set restoration goals for liming acidified Norwegian lakes. Restor Ecol, 6, 353–363.

    Article  Google Scholar 

  • Holmes, R. W., Whiting, M. C., & Stoddard, J. L. (1989). Changes in diatom-inferred pH and acid neutralizing capacity in a dilute, high elevation, Sierra Nevada lake since A.D. 1825. Freshw Biol, 21, 295–310.

    Article  Google Scholar 

  • Jahns, R. H. (1943). Sheet structure in granites: its origin and use as a measure of glacial erosion in New England. J Geol, 11(2), 71–98.

    Article  Google Scholar 

  • Jenkins, A., Ferrier, R. C., & Cosby, B. J. (1997). A dynamic model for assessing the impact of coupled sulphur and nitrogen deposition scenarios on surface water acidification. J Hydrol, 197, 111–127.

    Article  CAS  Google Scholar 

  • Landers, D. H., Eilers, J. M., Brakke, D. F., Overton, W. S., Kellar, P. E., Silverstein, M., et al. (1987). Characteristics of lakes in the western United States, volume 1: population descriptions and physico-chemical relationships, EPA-600/3-86/054a. Washington, D. C.: U.S. Environmental Protection Agency. 176 pp.

    Google Scholar 

  • Leydecker, A., Sickman, J., & Melack, J. (1999). Episodic acidification in the Sierra Nevada, California. Water Resour Res, 35, 2793–2804.

    Article  CAS  Google Scholar 

  • Lien, L., Raddum, G. G., Fjellheim, A., & Henriksen, A. (1996). Relating critical loads to aquatic biota. In United Kingdom Critical Loads Advisory Group. Critical Loads of Acid Deposition for United Kingdom Freshwater, ISBN 1 870393 25 2, 47-57.

  • Lokke, H., Bak, J., Falkengren-Gerup, U., Finlay, R. D., Livesniemi, H., Nygaard, P. H., et al. (1996). Critical loads of acidic deposition for forest soils: is the current approach adequate? Ambio, 25, 510–516.

    Google Scholar 

  • Melack, J.M., & Sickman, J. O. (1997). Monitoring wet deposition in alpine areas of the Sierra Nevada, California Environmental Protection Agency Air Resources Board, Final Report A932-081, 198 pp.

  • Melack, J. M., & Stoddard, J. L. (1991). Sierra Nevada, California. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems: regional case studies (pp. 503–530). New York: Springer.

    Chapter  Google Scholar 

  • Melack, J. M., Stoddard, J. L., & Ochs, C. A. (1985). Major ion chemistry and sensitivity to acid precipitation of Sierra Nevada lakes. Water Resour Res, 21, 27–32.

    Article  CAS  Google Scholar 

  • Moiseenko, T. I., & Gashkina, N. A. (2011). Zonal features of lake acidification. Water Resour, 38, 47–62.

    Article  CAS  Google Scholar 

  • Musselman, R. C., & Slauson, W. L. (2004). Water chemistry of high elevation Colorado wilderness lakes. Biogeochemistry, 71, 387–414.

    Article  CAS  Google Scholar 

  • Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulfur and nitrogen, Nordic Council of Ministers. Nord, 1988, 15.

    Google Scholar 

  • Ouimet, R., Duchesne, L., Houle, D., & Arp, P. A. (2001). Critical loads and exceedances of acid deposition and associated forest growth in the northern hardwood and boreal coniferous forests in Quebec, Canada. Water Air Soil Pollut Focus, 1, 119–134.

    Article  CAS  Google Scholar 

  • Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl, 21(8), 3049–3082.

    Article  Google Scholar 

  • Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: implications of critical loads for atmospheric deposition of nitrogen and sulfur. Bioscience, 55, 603–612.

    Article  Google Scholar 

  • Saros, J. E., Clow, D. W., Blett, T., & Wolfe, A. P. (2010). Critical nitrogen deposition loads in high-elevation lakes of the Western US inferred from paleolimnological records. Water Air Soil Pollut. doi:10.1007/s11270-010-0526-6.

    Google Scholar 

  • Segall, P., McKee, E. H., Martel, S. J., & Turrin, B. D. (1990). Late Cretaceous age of fractures in the Sierra-Nevada Batholith, California. Geology, 18(12), 1248–1251.

    Article  Google Scholar 

  • Sickman, J. O., Melack, J. M., & Clow, D. W. (2003). Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol Oceanogr, 48(5), 1885–1892.

    Article  CAS  Google Scholar 

  • Sickman, J. O., Bennett, D. M., Lucero, D. M., Whitmore, T. J., & Kenney, W. F. (2013). Diatom-inference models for acid neutralizing capacity and nitrate based on 41 calibration lakes in the Sierra Nevada, California, USA. J Paleolimnol. doi:10.1007/s10933-013-9711-0.

    Google Scholar 

  • Stauffer, R. E. (1990). Granite weathering and the sensitivity of alpine lakes to acid deposition. Limnol Oceanogr, 35, 1112–1134.

    Article  CAS  Google Scholar 

  • Stoddard, J. L. (1987). Alkalinity dynamics in an unacidified alpine lake, Sierra Nevada, California. Limnol Oceanogr, 32, 825–839.

    Article  CAS  Google Scholar 

  • Stoddard, J. L. (1995). Episodic acidification during snowmelt of high elevation lakes in the Sierra Nevada mountains of California. Water Air Soil Pollut, 85, 353–358.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., McDonnell, T. C., Porter, E. M., Blett, T., Haeuber, R., et al. (2012). Critical loads of acidity to protect restore acid-sensitive streams in Virginia and West Virginia. Water Air Soil Pollut, 223, 5759–5771.

    Article  CAS  Google Scholar 

  • Sverdrup, H., & De Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water Air Soil Pollut, 72, 143–162.

    Article  CAS  Google Scholar 

  • Sverdrup, H., De Vries, W., & Henriksen, A. (1990). Mapping critical loads: a guide to the criteria, calculations, data collection, and mapping of critical loads, Miljorapport (environmental report) 1990:14, Copenhagen: Nordic Council of Ministers, NORD, 1990:98, 124 pp.

  • Wakabayashi, J., & Sawyer, T. L. (2001). Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California. J Geol, 109, 539–562.

    Article  Google Scholar 

  • Warhaftig, C. (1965). Stepped topography of the Southern Sierra Nevada, California. Geol Soc Am Bull, 76, 1165–1190.

    Article  Google Scholar 

  • Wilander, A. (1994). Estimation of background sulphate concentrations in natural surface waters in Sweden. Water Air Soil Pollut, 75, 371–387.

    Article  CAS  Google Scholar 

  • Williams, M. W., Brown, A. D., & Melack, J. M. (1993). Geochemical and hydrological controls on the composition of surface water in a high-elevation basin, Sierra Nevada, California. Limnol Oceanogr, 38, 775–797.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the US Forest Service and the Region 5 Air Resource Management program, particularly Trent Proctor, for providing funding and support in the collection of water samples. The authors acknowledge Neil Berg for providing annual reports of the water chemistry and sampling, and for his instrumental role in establishing lake sampling protocols for data used in this study. The authors thank the staff at the US Forest Service Air Resource Management Lab (ARML) in Fort Collins, CO for providing the chemical analysis of the lake water samples. The authors would also like to thank the anonymous reviewers for their time and comments to help improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn D. Shaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(DOCX 39 kb)

ESM Table 2

(DOCX 162 kb)

ESM Table 3

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, G.D., Cisneros, R., Schweizer, D. et al. Critical Loads of Acid Deposition for Wilderness Lakes in the Sierra Nevada (California) Estimated by the Steady-State Water Chemistry Model. Water Air Soil Pollut 225, 1804 (2014). https://doi.org/10.1007/s11270-013-1804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1804-x

Keywords

Navigation