Skip to main content
Log in

Removal of Sb(III) and Sb(V) from Aqueous Solutions Using nZVI

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nanoscale zero-valent iron (nZVI) was synthesized and used for the removal of Sb(III) and Sb(V) from aqueous solutions. Results showed that more than 90 % of antimony would be removed in 15 min and that all of antimony could be removed with appropriate nZVI dosage in 90 min. The influence of pH value and possible impurities was investigated. The pH of 4 was found as the optimum pH. Discussion and speculation about the mechanism were presented according to X-ray photoelectron spectroscopy and transmission electron microscopy data. A sheet-like structure was observed after a 90-min reaction, and antimony was detected on the surface by energy-dispersive X-ray spectroscopy. Both Sb(III) and Sb(V) partially reduced in the process. The presence of humic acid transformed the morphology of nZVI but barely influenced the removal efficiency. Competing ions showed diverse influence between Sb(III) and Sb(V). The overall results indicated that nZVI was an efficient and suitable material for the removal of antimony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An, Y.-J., & Kim, M. (2009). Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere, 74(5), 654–659.

    Article  CAS  Google Scholar 

  • Catalano, J. G., Fenter, P., Park, C., Zhang, Z., & Rosso, K. M. (2010). Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. Geochimica et Cosmochimica Acta, 74(5), 1498–1512. doi:10.1016/j.gca.2009.12.018.

    Article  CAS  Google Scholar 

  • Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45(5), 1995–2001.

    Article  CAS  Google Scholar 

  • Crane, R., & Scott, T. (2011). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials.

  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211, 112–125. doi:10.1016/j.jhazmat.2011.11.073.

    Article  Google Scholar 

  • Devlin, J., & Allin, K. (2005). Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology, 39(6), 1868–1874.

    Article  CAS  Google Scholar 

  • Diegoli, S., Manciulea, A. L., Begum, S., Jones, I. P., Lead, J. R., & Preece, J. A. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment, 402(1), 51–61.

    Article  CAS  Google Scholar 

  • Dong, H., & Lo, I. (2013). Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Research, 47, 419–427.

    Article  CAS  Google Scholar 

  • Dong, H. R., Guan, X. H., & Lo, I. M. C. (2012). Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction. [Article]. Water Research, 46(13), 4071–4080. doi:10.1016/j.watres.2012.05.015.

    Article  CAS  Google Scholar 

  • Efecan, N., Shahwan, T., Eroğlu, A. E., & Lieberwirth, I. (2009). Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination, 249(3), 1048–1054.

    Article  CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002a). Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews, 57(1–2), 125–176. doi:10.1016/s0012-8252(01)00070-8.

    Article  CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002b). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. [Review]. Earth-Science Reviews, 59(1–4), 265–285. doi:10.1016/s0012-8252(02)00089-2.

    Article  CAS  Google Scholar 

  • Giasuddin, A. B. M., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022–2027. doi:10.1021/es0616534.

    Article  CAS  Google Scholar 

  • Gungor, E. B. O., & Bekbolet, M. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. [Article]. Geoderma, 159(1–2), 131–138. doi:10.1016/j.geoderma.2010.07.004.

    Article  Google Scholar 

  • He, M. C., Wang, X. Q., Wu, F. C., & Fu, Z. Y. (2012). Antimony pollution in China. [Review]. Science of the Total Environment, 421, 41–50. doi:10.1016/j.scitotenv.2011.06.009.

    Article  Google Scholar 

  • Joo, S. H., Feitz, A. J., Sedlak, D. L., & Waite, T. D. (2005). Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environmental Science & Technology, 39(5), 1263–1268. doi:10.1021/es048983d.

    Article  CAS  Google Scholar 

  • Kameda, T., Nakamura, M., & Yoshioka, T. (2012a). Removal of antimonate ions from an aqueous solution by anion exchange with magnesium-aluminum layered double hydroxide and the formation of a brandholzite-like structure. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 47(8), 1146–1151. doi:10.1080/10934529.2012.668121.

    Article  CAS  Google Scholar 

  • Kameda, T., Nakamura, M., & Yoshioka, T. (2012b). Removal of antimonate ions from aqueous solution using copper–aluminum layered double hydroxide. Fresenius Environmental Bulletin, 21(5A), 1323–1328.

    CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291–1298. doi:10.1021/es048991u.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Greneche, J. M., & Choi, H. (2006). Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 40(6), 2045–2050. doi:10.1021/es0520924.

    Article  CAS  Google Scholar 

  • Klausen, J., Ranke, J., & Schwarzenbach, R. P. (2001). Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere, 44(4), 511–517.

    Article  CAS  Google Scholar 

  • Li, X.-Q., & Zhang, W.-X. (2006a). Iron nanoparticles: the core–shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638–4642.

    Article  CAS  Google Scholar 

  • Li, X., & Zhang, W. (2006b). Iron nanoparticles: the core–shell structure and unique properties for Ni (II) sequestration. Langmuir, 22(10), 4638–4642.

    Article  CAS  Google Scholar 

  • Li, X. Q., & Zhang, W. X. (2007). Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 111(19), 6939–6946. doi:10.1021/jp0702189.

    Article  CAS  Google Scholar 

  • Li, X. Q., Elliott, D. W., & Zhang, W. X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. [Review]. Critical Reviews in Solid State and Materials Sciences, 31(4), 111–122. doi:10.1080/10408430601057611.

    Article  CAS  Google Scholar 

  • Lipczynska-Kochany, E., Harms, S., Milburn, R., Sprah, G., & Nadarajah, N. (1994). Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds. Chemosphere, 29(7), 1477–1489.

    Article  CAS  Google Scholar 

  • Littera, P., Urik, M., Gardogova, K., & Kolencik, M. (2012). Beech sawdust: a potential biosorbent for antimony(III) removal. Fresenius Environmental Bulletin, 21(5), 1066–1072.

    CAS  Google Scholar 

  • Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 40(19), 6085–6090.

    Article  CAS  Google Scholar 

  • Manning, B. A., Hunt, M. L., Amrhein, C., & Yarmoff, J. A. (2002). Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environmental Science & Technology, 36(24), 5455–5461.

    Article  CAS  Google Scholar 

  • Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., et al. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 39(5), 1221–1230.

    Article  CAS  Google Scholar 

  • Ramos, M. A., Yan, W., Li, X.-Q., Koel, B. E., & Zhang, W.-X. (2009a). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594.

    Article  CAS  Google Scholar 

  • Ramos, M. A. V., Yan, W., Li, X., Koel, B. E., & Zhang, W. (2009b). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core–shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594.

    Article  CAS  Google Scholar 

  • Ramos, M. A. V., Yan, W., Li, X. Q., Koel, B. E., & Zhang, W. X. (2009c). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. Journal of Physical Chemistry C, 113(33), 14591–14594. doi:10.1021/jp9051837.

    Article  CAS  Google Scholar 

  • Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology, 36(13), 2889–2896.

    Article  CAS  Google Scholar 

  • Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44(9), 3455–3461.

    Article  CAS  Google Scholar 

  • Ritter, K., Odziemkowski, M., Simpgraga, R., Gillham, R., & Irish, D. (2003). An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. Journal of Contaminant Hydrology, 65(1), 121–136.

    Article  CAS  Google Scholar 

  • Schlicker, O., Ebert, M., Fruth, M., Weidner, M., Wüst, W., & Dahmke, A. (2005). Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water, 38(3), 403–409.

    Article  Google Scholar 

  • Smith, K. S. (1999). Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. The Environmental Geochemistry of Mineral Deposits Part A: Processes, Techniques, and Health Issues: Colorado, Society of Economic Geologists, Reviews in Economic Geology A, 6, 161–182.

    Google Scholar 

  • Subramaniam, K., Yiacoumi, S., & Tsouris, C. (2001). Copper uptake by inorganic particles - equilibrium, kinetics, and particle interactions: experimental. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 177(2–3), 133–146.

    CAS  Google Scholar 

  • Walsch, J., & Dultz, S. (2010). Effects of pH, Ca- and SO4-concentration on surface charge and colloidal stability of goethite and hematite—consequences for the adsorption of anionic organic substances. Clay Minerals, 45(1), 1–13. doi:10.1180/claymin.2010.045.1.01.

    Article  CAS  Google Scholar 

  • Winship, K. (1987). Toxicity of antimony and its compounds. Adverse Drug Reactions and Acute Poisoning Reviews, 6(2), 67.

    CAS  Google Scholar 

  • Xie, Y., & Cwiertny, D. M. (2012a). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46(15), 8365–8373. doi:10.1021/es301753u.

    Article  CAS  Google Scholar 

  • Xie, Y., & Cwiertny, D. M. (2012b). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46(15), 8365–8373.

    Article  CAS  Google Scholar 

  • Yan, W., Herzing, A. A., Kiely, C. J., & Zhang, W.-X. (2010a). Nanoscale zero-valent iron (nZVI): aspects of the core–shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3), 96–104.

    Article  CAS  Google Scholar 

  • Yan, W. L., Herzing, A. A., Kiely, C. J., & Zhang, W. X. (2010b). Nanoscale zero-valent iron (nZVI): aspects of the core–shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118(3–4), 96–104. doi:10.1016/j.jconhyd.2010.09.003.

    Article  CAS  Google Scholar 

  • Yan, W., Ramos, M. A., Koel, B. E., & Zhang, W.-X. (2012). As (III) Sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 116(9), 5303–5311.

    Article  CAS  Google Scholar 

  • Yan, W. L., Lien, H. L., Koel, B. E., & Zhang, W. X. (2013). Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science-Processes & Impacts, 15(1), 63–77. doi:10.1039/c2em30691c.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was sponsored by the National Natural Science Foundation of China (key program no. 21246001, 51138009, 41101480), the fundamental research key project of the Science and Technology Commission of Shanghai Municipality(11JC1412600), and the National Key Technologies R&D Program of China (no. 2012BAJ25B02, 2012BAJ25B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, C., Zhou, Z., Zhou, X. et al. Removal of Sb(III) and Sb(V) from Aqueous Solutions Using nZVI. Water Air Soil Pollut 225, 1799 (2014). https://doi.org/10.1007/s11270-013-1799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1799-3

Keywords

Navigation