Skip to main content
Log in

Twelve-Year Performance of a Constructed Wetland for Municipal Wastewater Treatment: Water Quality Improvement, Metal Distribution in Wastewater, Sediments, and Vegetation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Constructed wetlands have been successfully used throughout the world for wastewater treatment. Nowadays, one of the most discussed questions is their long-term performance. The present study summarizes the performance of a constructed wetland designed to treat the municipal wastewater from a rural community in northwestern Spain during a period of 12 years. The monitoring of water quality for organic matter, suspended solids, nutrients, and indicator bacteria revealed that, in general, the effluent concentrations were significantly lower than influent concentrations. Moreover, differences among years were not statistically significant. Metals and metalloids were also monitored in wastewater, sediment, and vegetation. Results showed that these pollutants have mainly accumulated in the sediments, whereas only a minor fraction has been removed by plant uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CW:

Constructed wetland

p.e.:

Population equivalent

HF:

Horizontal subsurface flow

VF:

Vertical flow

FWS:

Free water surface

HMAE:

Hierarchical Mosaic of Artificial Ecosystems

References

  • Ansola, G., González, J. M., Cortijo, R., & de Luis, E. (2003). Experimental and full-scale pilot plant constructed wetlands for municipal wastewaters treatment. Ecological Engineering, 21(1), 43–52.

    Article  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association. 1368 pp.

    Google Scholar 

  • Arroyo, P., Ansola, G., & de Luis, E. (2010). Effectiveness of a full-scale constructed wetland for the removal of metals from domestic wastewater. Water, Air, and Soil Pollution, 210(1–4), 473–481.

    Article  CAS  Google Scholar 

  • Council of the European Communities, 1986. Directive 86/278/EEC on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities, L 181, 4 July, Brussels.

  • Council of the European Communities, 1991. Urban waste water treatment Directive 91/271/EEC. Official Journal of the European Communities, L135, 30 May, Brussels.

  • Council of the European Communities, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L 327/1, 22 December, Brussels.

  • Cui, L. H., Liu, W., Zhu, X. Z., Ma, M., Huang, X., & Xia, Y. Y. (2006). Performance of hybrid constructed wetlands systems for treating septic tank effluent. Journal of Environmental Science, 18(4), 665–669.

    CAS  Google Scholar 

  • Di Luca, G. A., Maine, M. A., Mufarrege, M. M., Hadad, H. R., Sánchez, G. C., & Bonetto, C. A. (2011). Metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Ecological Engineering, 37(9), 1267–1275.

    Article  Google Scholar 

  • El Hamouri, B., El Nazih, J. & Lahjouj, J. (2007). Subsurface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination, 215(1–3), 153–158.

    Google Scholar 

  • Fahd, K., Martín, I., & Salas, J. J. (2007). The Carrión de los Céspedes Experimental Plant and the Technological Transfer Centre: urban wastewater treatment experimental platforms for the small rural communities in the Mediterranean area. Desalination, 215(1–3), 12–21.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. S., Terzakis, S., Chatzinotas, A., Brix, H., Kalogerakis, N., & Manios, T. (2009). Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Science of the Total Environment, 407, 2996–3003.

    Article  CAS  Google Scholar 

  • García, J., Mujeriego, R., Obis, J. M., & Bou, J. (2001). Wastewater treatment for small communities in Catalonia (Mediterranean region). WaterPolicy, 3(4), 341–350.

    Google Scholar 

  • García, M., Soto, F., González, J. M., & Bécares, E. (2008). A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecological Engineering, 32(3), 238–243.

    Article  Google Scholar 

  • Greenway, M. (2005). The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecological Engineering, 25, 501–509.

    Article  Google Scholar 

  • Herrera, J. A., Martín, A. J., Araña, J., González, O., & González, J. J. (2010). Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 36(7), 891–899.

    Article  Google Scholar 

  • Hsu, C., Hsieh, H., Yang, L., Wu, S., Chang, J., Hsiao, S., et al. (2011). Biodiversity of constructed wetlands for wastewater treatment. Ecological Engineering, 37(10), 1533–1545.

    Article  Google Scholar 

  • IWA (2000).Constructed wetlands for pollution control: processes, performance, design and operation. In: Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haberl R, editors. IWA scientific and Technical report, vol. 8.

  • Kadlec, R. H. (2009). Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering, 35(2), 159–174.

    Article  Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands (p. 893). Boca Raton: Lewis/CRC.

    Google Scholar 

  • Knox, A. S., Paller, M. H., Nelson, E. A., Specht, W. L., Halverson, N. V., & Gladden, J. B. (2006). Metal distribution and stability in constructed wetland sediment. Journal of Environmental Quality, 35(5), 1948–1959.

    Article  CAS  Google Scholar 

  • Kröpfelová, L., Vymazal, J., Svehla, J., & Stíchová, J. (2009). Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environmental Pollution, 157(4), 1186–1194.

    Article  Google Scholar 

  • Lesage, E., 2006. Behaviour of heavy metals in constructed treatment wetlands. PhD thesis. Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 247 pp.

  • Lesage, E., Rousseau, D. P. L., Meers, E., & Tack, F. M. G. (2007). Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Science of the Total Environment, 380(1–3), 102–115.

    Article  CAS  Google Scholar 

  • Li, X., Chen, M., & Anderson, B. C. (2009). Design and performance of a water quality treatment wetland in a public park in Shanghai, China. Ecological Engineering, 35(1), 18–24.

    Article  CAS  Google Scholar 

  • Liu, C., Du, G., Huang, B., Meng, Q., Li, H., Wang, Z., et al. (2007). Biodiversity and water quality variations in constructed wetland system. Acta Ecologica Sinica, 27(9), 3670–3677.

    Article  CAS  Google Scholar 

  • Lu, S. Y., Wu, F. C., Lu, Y. F., Xiang, C. S., Zhang, P. Y., & Jin, C. X. (2009). Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering, 35(3), 402–409.

    Article  Google Scholar 

  • Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environmental Pollution, 158(12), 3447–3461.

    Article  CAS  Google Scholar 

  • Morsy, E. A., Al-Herrawy, A. Z., & Ali, M. A. (2007). Assessment of Cryptosporidium removal from domestic wastewater via constructed wetland systems. Water, Air, and Soil Pollution, 179(1–4), 207–15.

    Article  CAS  Google Scholar 

  • Narváez, L., Cunill, C., Cáceres, R., & Marfá, O. (2011). Design and monitoring of horizontal subsurface flow constructed wetlands for treating nursery leachates. Bioresource Technology, 102(11), 6414–6420.

    Article  Google Scholar 

  • Noorvee, A., Põldvere, E., & Mander, U. (2007). The effect of pre-aeration on the purification processes in the long-term performance of a horizontal subsurface flow constructed wetland. Science of the Total Environment, 380(1–3), 229–236.

    Article  CAS  Google Scholar 

  • Ortega de Miguel, E., Ferrer, Y., Salas, J. J., & Aragón, C. (2010). Manual para la implantación de sistemas de depuración en pequeñas poblaciones. Ed. Ministerio de Medio Ambiente (p. 455). Madrid, Spain: Medio Rural y Marino.

    Google Scholar 

  • Pedescoll, A., Corzo, A., Alvarez, E., Puigagut, J., & García, J. (2011). Contaminant removal efficiency depending on primary treatment and operational strategy in horizontal subsurface flow treatment wetlands. Ecological Engineering, 37(2), 372–380.

    Article  Google Scholar 

  • Radoux, M., & Kemp, D. (1982). Aproche écologique et experimentale des potentialités épuratrices de quelques hélophytes: Phragmites australis (cav.) Trin. Ex Steud. Typha latifolia L. et Carex acuta L. Trib. Cebedeau, 465–466(35), 325–340.

    Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19(2), 105–116.

    Article  CAS  Google Scholar 

  • Sleytr, K., Tietz, A., Langergraber, G., & Haberl, R. (2007). Investigation of bacterial removal during the filtration process in constructed wetlands. Science of the Total Environment, 380(1–3), 173–180.

    Article  CAS  Google Scholar 

  • Terzakis, S., Fountoulakis, M. S., Gergaki, I., Albantakis, D., Sabathianakis, I., Karathanasis, A. D., et al. (2008). Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere, 72(2), 141–149.

    Article  CAS  Google Scholar 

  • Tsalkatidou, M., Gratziou, M., & Kotsovinos, N. (2009). Combined stabilization ponds-constructed wetland system. Desalination, 248(3), 988–997.

    Article  CAS  Google Scholar 

  • USEPA. (2000). Manual: constructed wetlands treatment of municipal wastewaters (p. 154) Cincinnati, OH: USEPA Office of Research and Development.

  • Verhoeven, J. T. A., & Meuleman, A. F. M. (1999). Wetlands for wastewater treatment: opportunities and limitations. Ecological Engineering, 12(1), 5–12.

    Article  Google Scholar 

  • Vesk, P., & Allaway, W. (1997). Spatial variation of copper and lead concentrations of water hyacinth plants in a wetland receiving urban run-off. Aquatic Botany, 59, 33–44.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2002). The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, 18(5), 633–46.

    Article  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 65–78.

    Google Scholar 

  • Vymazal, J. (2009). b). Horizontal sub-surface flow constructed wetlands Ondrejov and Sáplené Porící in the Czech Republic—15 years of operation. Desalination, 246(1–3), 226–237.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2011). Long-term performance of constructed wetlands with horizontal sub-surface flow: ten case studies from the Czech Republic. Ecological Engineering, 37(1), 54–67.

    Article  Google Scholar 

  • Vymazal, J., & Krása, P. (2003). Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage. Water Science and Technology, 48(5), 299–305.

    CAS  Google Scholar 

  • Vymazal, J., & Kröpfelova, L. (2011). A three-stage experimental constructed wetland for treatment of domestic sewage: first 2 years operation. Ecological Engineering, 37(1), 90–98.

    Article  Google Scholar 

  • Vymazal, J., Kröpfelová, L., Svehla, J., Chrastný, V., & Stíchova, J. (2009). Trace elements in Phragmites australis growing in constructed wetlands for treatment of municipal wastewater. Ecological Engineering, 35(2), 303–309.

    Article  Google Scholar 

  • Yu, T. R. (1991). Characteristics of soil acidity of paddy soils in relation to rice growth. In R. J. Wright et al. (Eds.), Plant–soil interactions at low pH (pp. 107–112). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Zhang, D., Gersberg, R. M., & Soon, T. (2009). Constructed wetlands in China. Ecological Engineering, 35(10), 1367–1378.

    Article  Google Scholar 

  • Zurita, F., Anda, F., & Belmont, M. A. (2009). Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecological Engineering, 35(5), 861–869.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Diputación Provincial de León for the financial support offered during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Arroyo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arroyo, P., Blanco, I., Cortijo, R. et al. Twelve-Year Performance of a Constructed Wetland for Municipal Wastewater Treatment: Water Quality Improvement, Metal Distribution in Wastewater, Sediments, and Vegetation. Water Air Soil Pollut 224, 1762 (2013). https://doi.org/10.1007/s11270-013-1762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1762-3

Keywords

Navigation