Skip to main content
Log in

Simultaneous Adsorption of Tri- and Hexavalent Chromium by Organoclay Mixtures

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Organoclays possess unique adsorption behaviour towards hydrophobic organic contaminants. They can also remediate ionic contaminants such as heavy metals and metalloids. The objective of the present study was to prepare organoclay and organoclay mixtures efficient to adsorb both cationic and anionic contaminants. The adsorbents were characterised by X-ray diffraction and infrared spectroscopy. Trivalent (Cr3+) and hexavalent (Cr2O7 2−) chromium were selected as the model contaminants representing cationic and anionic properties. Bentonite modified with cationic surfactant hexadecyl trimethylammonium bromide at double the cation exchange capacity of the clay remarkably improved Cr2O7 2− adsorption capacity (as high as 0.49 mmol g−1). Similarly, its modification with anionic surfactant sodium dodecyl sulphate at the same dosage improved Cr3+ adsorption (as high as 0.36 mmol g−1). When these two organoclays were physically mixed in equal proportions (1:1), the resultant organoclay mixture efficiently adsorbed both Cr3+ (as high as 0.21 mmol g−1) and Cr2O7 2− (as high as 0.32 mmol g−1) implying that the mixture could remediate both anionic and cationic contaminants simultaneously. The adsorption of Cr3+ by the organoclay and organoclay mixture fitted well to the Langmuir isothermal model whereas the adsorption of Cr2O7 2− fitted well to the Freundlich model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akar, S. T., Yetimoglu, Y., & Gedikbey, T. (2009). Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: Effect of activation and modification. Desalination, 244, 97–108.

    Article  CAS  Google Scholar 

  • Andini, S., Cioffi, R., Montagnaro, F., Pisciotta, F., & Santor, L. (2006). Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite. Applied Clay Science, 31, 126–133.

    Article  CAS  Google Scholar 

  • Atia, A. A. (2008). Adsorption of chromate and molybdate by cetylpyridinium bentonite. Applied Clay Science, 41, 73–84.

    Article  CAS  Google Scholar 

  • Bate, B., & Burns, S. E. (2010). Effect of total organic carbon content and structure on the electrokinetic behavior of organoclay suspensions. Journal of Colloid and Interface Science, 343, 58–64.

    Article  CAS  Google Scholar 

  • Bedelean, H., Maicaneanu, A., Burca, S., & Stanca, M. (2010). Removal of heavy metal ions from wastewaters using natural clays. Clay Minerals, 44, 487–495.

    Article  Google Scholar 

  • Bergaya, F., & Lagaly, G. (2006). Chapter 1 general introduction: Clays, clay minerals, and clay science. In: F. Bergaya, B. K. G. Theng, & G. Lagaly (eds.), Developments in clay science, Elsevier, pp. 1–18.

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140, 114–131.

    Article  CAS  Google Scholar 

  • Borden, D., & Giese, R. F. (2001). Baseline studies of the clay minerals society source clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays and Clay Minerals, 49, 444–445.

    Article  CAS  Google Scholar 

  • Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2006). Chapter 11.1 clays and clay minerals for pollution control. In: F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in clay science, Elsevier, pp. 625–675.

  • de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24.

    Article  Google Scholar 

  • He, H., Guo, J., Xie, X., & Peng, J. (2000). Experimental study of the selective adsorption of heavy metals onto clay minerals. Chinese Journal of Geochemistry, 19, 105–109.

    Article  CAS  Google Scholar 

  • He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Xi, Y., & Kloprogge, J. T. (2006a). Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271.

    Article  CAS  Google Scholar 

  • He, H., Zhou, Q., Martens, W. N., Kloprogge, T. J., Yuan, P., Xi, Y., Zhu, J., & Frost, R. L. (2006b). Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays and Clay Minerals, 54, 689–696.

    Article  Google Scholar 

  • Keith, L., & Telliard, W. (1979). ES&T special report: Priority pollutants: I—A perspective view. Environmental Science and Technology, 13, 416–423.

    Article  Google Scholar 

  • Khenifi, A., Bouberka, Z., Sekrane, F., Kameche, M., & Derriche, Z. (2007). Adsorption study of an industrial dye by an organic clay. Adsorption, 13, 149–158.

    Article  CAS  Google Scholar 

  • Krishna, B. S., Murty, D. S. R., & Jai Prakash, B. S. (2000). Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay. Journal of Colloid and Interface Science, 229, 230–236.

    Article  CAS  Google Scholar 

  • Krishna, B. S., Murty, D. S. R., & Jai Prakash, B. S. (2001). Surfactant-modified clay as adsorbent for chromate. Applied Clay Science, 20, 65–71.

    Article  CAS  Google Scholar 

  • Li, Z., Willms, C. A., & Kniola, K. (2003). Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays and Clay Minerals, 51, 445–451.

    Article  CAS  Google Scholar 

  • Li, Z., Beachner, R., McManama, Z., & Hanlie, H. (2007). Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous and Mesoporous Materials, 105, 291–297.

    Article  CAS  Google Scholar 

  • Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22, 249–275.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Juang, R. S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92, 315–326.

    Article  CAS  Google Scholar 

  • Megharaj, M., Naidu, R., Xi, Y., & Sarkar, B. (2010). Modified clay sorbents. CRC CARE Pty Ltd., International Patent. World Intellectual Property Organisation International Bureau, International Publication Number: WO 2010/065996 A1.

  • Naidu, R., Sumner, M. E., & Harter, R. D. (1998). Sorption of heavy metals in strongly weathered soils: An overview. Environmental Geochemistry and Health, 20, 5–9.

    Article  CAS  Google Scholar 

  • Oyanedel-Craver, V. A., & Smith, J. A. (2006). Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazardous Materials, 137, 1102–1114.

    Article  CAS  Google Scholar 

  • Oyanedel-Craver, V. A., Fuller, M., & Smith, J. A. (2007). Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science, 309, 485–492.

    Article  CAS  Google Scholar 

  • Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G. S. R., & Naidu, R. (2010a). Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution: Isothermal studies. Journal of Colloid and Interface Science, 350, 295–304.

    Article  CAS  Google Scholar 

  • Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G. S. R., Rajarathnam, D., & Naidu, R. (2010b). Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. Journal of Hazardous Materials, 183, 87–97.

    Article  CAS  Google Scholar 

  • Sarkar, B., Megharaj, M., Xi, Y., & Naidu, R. (2011a). Structural characterisation of Arquad® 2HT-75 organobentonites: Surface charge characteristics and environmental application. Journal of Hazardous Materials, 195, 155–161.

    Article  CAS  Google Scholar 

  • Sarkar, B., Xi, Y., Megharaj, M., & Naidu, R. (2011b). Orange II adsorption on palygorskites modified with alkyl trimethylammonium and dialkyl dimethylammonium bromide—An isothermal and kinetic study. Applied Clay Science, 51, 370–374.

    Article  CAS  Google Scholar 

  • Sarkar, B., Megharaj, M., Xi, Y., & Naidu, R. (2012a). Surface charge characteristics of organo-palygorskites and adsorption of p-nitrophenol in flow-through reactor system. Chemical Engineering Journal, 185–186, 35–43.

    Article  Google Scholar 

  • Sarkar, B., Naidu, R., Rahman, M., Megharaj, M., & Xi, Y. (2012b). Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of Soils and Sediments, 12, 704–712.

    Article  CAS  Google Scholar 

  • Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G. S. R., Bowman, M., Rose, H., & Naidu, R. (2012c). Bio-reactive organoclay: A new technology for environmental remediation. Critical Reviews in Environmental Science and Technology, 42, 435–488.

    Article  CAS  Google Scholar 

  • Sethunathan, N., Megharaj, M., Smith, L., Kamaludeen, S. P. B., Avudainayagam, S., & Naidu, R. (2005). Microbial role in the failure of natural attenuation of chromium(VI) in long-term tannery waste contaminated soil. Agriculture, Ecosystem and the Environment, 105, 657–661.

    Article  CAS  Google Scholar 

  • Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316, 298–309.

    Article  CAS  Google Scholar 

  • Sullivan, E. J., Bowman, R. S., & Legiec, I. A. (2003). Sorption of arsenic from soil-washing leachate by surfactant-modified zeolite. Journal of Environmental Quality, 32, 2387–2391.

    Article  CAS  Google Scholar 

  • Tillman, F. D., Bartelt-Hunt, S. L., Smith, J. A., & Alther, G. R. (2004). Evaluation of an organoclay, an organoclay-anthracite blend, clinoptilolite, and hydroxy-apatite as sorbents for heavy metal removal from water. Bulletin of Environmental Contamination and Toxicology, 72, 1134–1141.

    Article  CAS  Google Scholar 

  • USDHHS (1987). Notice of the first priority list of hazardous substances that will be the subject of toxicological profiles. In: USDHHS-USEPA (Ed.) Federal Register, 52, pp. 12866–12874.

  • Vaia, R. A., Teukolsky, R. K., & Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.

    Article  CAS  Google Scholar 

  • Xi, Y., Ding, Z., He, H., & Frost, R. L. (2004). Structure of organoclays—An X-ray diffraction and thermogravimetric analysis study. Journal of Colloid and Interface Science, 277, 116–120.

    Article  CAS  Google Scholar 

  • Xi, Y., Ding, Z., He, H., & Frost, R. L. (2005). Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochimica Acta A, 61, 515–525.

    Article  Google Scholar 

  • Xi, Y., Frost, R. L., & He, H. (2007). Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science, 305, 150–158.

    Article  CAS  Google Scholar 

  • Xu, L., & Zhu, L. (2009). Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 331, 8–14.

    Article  CAS  Google Scholar 

  • Zadaka, D., Radian, A., & Mishael, Y. G. (2010). Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers. Journal of Colloid and Interface Science, 352, 171–177.

    Article  CAS  Google Scholar 

  • Zhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24, 1617–1629.

    Article  CAS  Google Scholar 

  • Zhu, J., He, H., Guo, J., Yang, D., & Xie, X. (2003). Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites. Chinese Science Bulletin, 48, 368–372.

    CAS  Google Scholar 

  • Zhu, J., He, H., Zhu, L., Wen, X., & Deng, F. (2005). Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 286, 239–244.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (B. S.) is thankful to the University of South Australia for the award of the University President Scholarship (UPS) and to the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) for the award of the PhD Fellowship. Help with ICP-OES analysis by Dr. Mohammad Mahmudur Rahman is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Naidu.

Additional information

Guest Editors: R Naidu, Euan Smith, MH Wong, Megharaj Mallavarapu, Nanthi Bolan, Albert Juhasz, and Enzo Lombi

This article is part of the Topical Collection on Remediation of Site Contamination

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, B., Naidu, R. & Megharaj, M. Simultaneous Adsorption of Tri- and Hexavalent Chromium by Organoclay Mixtures. Water Air Soil Pollut 224, 1704 (2013). https://doi.org/10.1007/s11270-013-1704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1704-0

Keywords

Navigation