Skip to main content

Advertisement

Log in

Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Four species of trees were selected to evaluate the tolerance to heavy crude oil contamination by means of a tolerance index integrating germination, height, biomass and survival as variables. Fresh seeds to Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany) and Tabebuia rosea (macuilis) were planted in a Vertisol to which heavy crude petroleum was added at four different treatments (C0, 0; C1, 18,940; C2, 44,000; and C3, 57,000 mg kg−1), with the control being uncontaminated soil. The experiment was carried out in a greenhouse during 203 days with a completely random design. The presence of petroleum in soil stimulated and increased germination of S. macrophylla and C. odorata, accelerated the germination of T. rosea and did not affect the germination of H. campechianum. The height and biomass of all species was reduced in the presence of petroleum in the soil. The survival of S. macrophylla and H. campechianum was not affected by petroleum at any concentration studied. On the other hand, C. odorata and T. rosea showed high mortality at all concentrations. The tolerance index showed that S. macrophylla was best at tolerating petroleum in soil and could be employed as a productive alternative for the advantageous use of contaminated sites. The use of tree species could be important because of the great potential of trees for phytoremediation due to their long life, biomass and deep roots that can penetrate and remediate deeper soil layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2002). Influence of diesel fuel on seed germination. Environmental Pollution, 120, 363–370.

    Article  CAS  Google Scholar 

  • Arriaga, V., Cervantes, V., & Vargas-Mena, A. (1994). Manual de reforestación con especies nativas. México: Instituto Nacional de Ecología, Secretaria de Desarrollo Social y Universidad Nacional Autónoma de México.

    Google Scholar 

  • Besalatpour, A., Khoshgoftarmanesh, A. H., Hajabbasi, M. A. & Afyuni, M. (2008). Germination and growth of selected plants in a petroleum contaminated calcareous soil. Soil & Sediment Contamination, 17, 665–676.

    Google Scholar 

  • Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194.

    Article  CAS  Google Scholar 

  • Bossert, I., & Bartha, R. (1984). The fate of petroleum in soil ecosystems. In R. M. Atlas (Ed.), Petroleum microbiology (pp. 434–476). New York: Macmillan.

    Google Scholar 

  • Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C., & Broll, G. (2006). Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation, 8(4), 273–284.

    Article  CAS  Google Scholar 

  • Briggs, G. G., Bromilow, R. H., & Evans, A. A. (1982). Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pesticide Science, 13, 495–504.

    Article  CAS  Google Scholar 

  • Burken, J. G., & Schnoor, J. L. (1998). Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environment Science and Technology, 32(21), 3379–3385.

    Article  CAS  Google Scholar 

  • Chaineau, C. H., Morel, J. L., & Oudot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons. Journal of Environmental Quality, 26, 1478–1483.

    Article  CAS  Google Scholar 

  • Chaineau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water, Air, and Soil Pollution, 144, 419–440.

    Article  CAS  Google Scholar 

  • Chan-Quijano, J. G., Ochoa-Gaona, S., Pérez-Hernández, I., Gutiérrez-Aguirre, M. A., & Saragos-Méndez, J. (2012). Germinación y sobrevivencia de especies arbóreas que crecen en suelos contaminados por hidrocarburos. Teoría y Praxis, 12, 102–119.

    Google Scholar 

  • CONAFOR. (2013). Comisión Nacional Forestal, SIRE-Paquetes tecnológicos. http://www.conafor.gob.mx/portal/index.php/temas-forestales/reforestacion/fichas-tecnicas. Accessed May 2013.

  • Cordero, J., & Boshier, D. H. (2003). Árboles de Centroamérica: un manual para extensionistas. San José: OFI-CATIE.

    Google Scholar 

  • Cunningham, D. S., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114.

    Article  CAS  Google Scholar 

  • Daws, M. I., Garwood, N. C., & Pritchard, H. W. (2005). Traits of recalcitrant seeds in a semi-deciduous tropical forest in Panamá: some ecological implications. Functional Ecology, 19, 874–885.

    Article  Google Scholar 

  • Dawson, J. J. C., Godsiffe, E. J., Thompson, I. P., Ralebitso-Senior, T. K., Killham, K. S., & Paton, G. I. (2007). Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biology and Biochemistry, 39, 164–177.

    Article  CAS  Google Scholar 

  • Debiane, D., Garcon, G., Verdin, A., Fontaine, J., Durand, R., Shirali, P., Grandmougin-Ferjani, A., & Lounes-Hadj, S. A. (2009). Mycorrhization alleviates benzo[a]pyrene induced oxidative stress in an in vitro chicory root model. Phytochemistry, 70, 1421–1427.

    Article  CAS  Google Scholar 

  • Díaz-Ramírez, I. J. (2004). Biodegradación de hidrocarburos por cultivos mixtos definidos aislados de la rizósfera de Cyperus laxus Lam. PhD Thesis. México D.F: Universidad Autónoma Metropolitana-Iztapalapa.

    Google Scholar 

  • Freedman, B. (1995). Environmental ecology. The impacts of pollution and other stresses on ecosystem structure and function (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Gechev, T. S., van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays, 28, 1091–1101.

    Article  CAS  Google Scholar 

  • Gianfreda, L., Rao, M. A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 341, 265–279.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Gómez, T. J., Jasso, M. J., Vargas, H. J. J., & Soto, H. M. R. (2006). Deterioro de semilla de dos procedencias de Swietenia macrophylla King., bajo distintos métodos de almacenamiento. Ra Ximhai, 2(1), 223–239.

    Google Scholar 

  • Gratáo, P., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32, 481–494.

    Article  Google Scholar 

  • Guerrero-Zúñiga, L. A., & Rodríguez-Dorantes, M. A. (2009). Efecto de la presencia de fenantreno sobre la expresión de proteínas y la actividad enzimática radical de Cyperus hermaphroditus. Polibotánica, 27, 103–130.

    Google Scholar 

  • Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    Article  CAS  Google Scholar 

  • Hampton, J. G., & Coolbear, P. (1990). Potential versus actual seed performance—can vigour testing provide an answer? Seed Science Technology, 18, 215–228.

    Google Scholar 

  • Hernández-Ortega, H. A., Alarcón, A., Ferrera-Cerrato, R., Zavaleta-Mancera, H. A., López- Delgado, H. A., & Mendoza-López, M. R. (2011). Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management, 95, 319–324.

    Article  Google Scholar 

  • Inckot, C. R., Oliveira, S. G., Souza, L. A., & Bona, C. (2011). Germination and development of Mimosa pilulifera in petroleum-contaminated soil and bioremediated soil. Flora—Morphology, Distribution, Functional Ecology of Plants, 206, 261–266.

    Article  Google Scholar 

  • INEGI. (2005). Cuaderno Estadístico Municipal de Centro, Tabasco. Accessed 29 January 13. http://www.inegi.gob.mx/est/contenidos/espanol/sistemas/cem05/info/tab/m004/mapas.pdf.

  • Labud, V., García, C., & Hernández, T. (2007). Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere, 66, 1863–1871.

    Article  CAS  Google Scholar 

  • Li, X., Feng, Y., & Sawatsky, N. (1997). Importance of soil–water relations in assessing the endpoint of bioremediated soils: plant growth. Plant and Soil, 192, 219–226.

    Article  CAS  Google Scholar 

  • Martí, M. C., Camejo, D., Fernández-García, N., Rellán-Álvarez, R., Marques, S., Sevilla, F., & Jiménez, A. (2009). Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. Journal of Hazardous Materials, 172, 879–885.

    Article  Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Arias, M. (2006). Effect of the tropical grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiological Research, 161, 80–91.

    Article  CAS  Google Scholar 

  • Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water, Air, and Soil Pollution, 165, 195–209.

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants y stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  Google Scholar 

  • Mohsenzade, F., Nasseri, S., Mesdaghinia, A., Nabizadeh, R., Zafari, D., & Chehregani, A. (2009). Phytoremediation of petroleum-contaminated soils: pre-screening for suitable plants and rhizospheral fungi. Toxicological and Environmental Chemistry, 91(8), 1443–1453.

    Article  CAS  Google Scholar 

  • Moller, I. M. (2001). Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 561–591.

    Article  CAS  Google Scholar 

  • Moller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.

    Article  Google Scholar 

  • Mostacedo, B., & Fredericksen, T. S. (2001). Regeneración y silvicultura de bosques tropicales en Bolivia (Proyecto de Manejo Forestal Sostenible (BOLFOR)). Santa Cruz: Editora El País.

    Google Scholar 

  • Mulawarman, J., Roshetko, M., Sasongko, S. M., & Irianto, D. (2003). Tree seed management—seed sources, seed collection and seed handling: a field manual for field workers and farmers. Bogor: International Centre for Research in Agroforestry (ICRAF) and Winrock International.

    Google Scholar 

  • Ochoa-Gaona, S., Pérez Hernández, I., Frías Hernández, J. A., Jarquín Sánchez, A., & Méndez Valencia, A. (2011). Estudio prospectivo de especies arbóreas promisorias para la fitorremediación de suelos contaminados por hidrocarburos. Villahermosa, Tabasco, México: Colección Bicentenario-José Narciso Rovirosa. Secretaria de Recursos Naturales y Protección Ambiental y El Colegio de la Frontera Sur.

    Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Porta, A., Filliat, N., & Plata, N. (1999). Phytotoxicity and phytoremediation studies in soils polluted by weathered oil. In A. Lesson & B. C. Alleman (Eds.), Phytoremediation and innovative strategies for specialized remedial applications (pp. 51–56). Columbus: Battelle Press.

    Google Scholar 

  • Pothuluri, J. V. & Cerniglia, C. E. (1994). Microbial metabolism of polycyclic aromatic hydrocarbons, In G.R Chaudhry (Ed). Biological Degradation and Bioremediation of Toxic Chemicals (pp. 92–124), Portland, OR: Dioscorides.

  • Quiñones Aguilar, E. E., Ferrera Cerrato, R., Gavi Reyes, F., Fernández Linares, L., Rodríguez Vázquez, R., & Alarcón, A. (2003). Emergencia y crecimiento de maíz en un suelo contaminado con petróleo crudo. Agrociencia, 37(6), 585–594.

    Google Scholar 

  • Reynoso-Cuevas, L., Gallegos-Martínez, M. E., Cruz-Sosa, F., & Gutiérrez-Rojas, M. (2008). In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresource Technology, 99, 6379–6385.

    Article  CAS  Google Scholar 

  • Rivera-Cruz, M. C., & Trujillo, N. A. (2004). Estudio de toxicidad vegetal en suelos con petróleos nuevo e intemperizado. Interciencia, 29(7), 369–376.

    Google Scholar 

  • Rivera-Cruz, M. C., Ferrera-Cerrato, R., Sánchez-García, P., Volke-Haller, V., Fernández-Linares, L., & Rodríguez-Vázquez, R. (2004). Descontaminación de suelos con petróleo crudo mediante microorganismos autóctonos y pasto alemán [Echinochloa polystachya (H.B.K.) Hitchc.]. Agrociencia, 38(1), 1–12.

    Google Scholar 

  • Roy, J. L., & McGill, W. B. (1998). Characterization of disaggregated non wettable surface soils found at old spill site. Canadian Journal of Soil Science, 78, 331–344.

    Article  Google Scholar 

  • Salanitro, J. P., Dorn, P. B., Huesemann, H. M., Moore, K. O., Rhodes, I. A., Rice Jackson, L. M., Vipond, T. E., Western, M. M., & Wisniewski, H. L. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science and Technology, 31(6), 1769–1776.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sautu, A., Baskin, J. M., Baskin, C. C., Deago, J., & Condit, R. (2007). Classification and ecological relationships of seed dormancy in a seasonal moist tropical forest, Panama, Central America. Seed Science Research, 17, 127–140.

    Article  Google Scholar 

  • Saval, S. (1997). Biorremediación de un suelo contaminado con diesel. Ingeniería y Ciencias Ambientales, 33, 24–30.

    Google Scholar 

  • Sawatsky, N., & Li, X. (1997). Importance of soil–water relations in assessing the endpoint of bioremediated soils II. Water-repellency in hydrocarbon contaminated soils. Journal of Plant Soil, 192, 227–236.

    Article  CAS  Google Scholar 

  • Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology, 29(7), 318A–323A.

    CAS  Google Scholar 

  • SEMARNAT. (2005) Norma Oficial Mexicana NOM-138-SEMARNAT/SS-2003, Límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación. México, DF, México: Secretaría del Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, 29/03/2005.

  • Sharifi, M., Sadeghi, Y., & Akbarpour, M. (2007). Germination and growth of six plant species on contaminated soil with spent oil. International journal of Environmental Science and Technology, 4(4), 463–470.

    CAS  Google Scholar 

  • Shirdam, R., Zand, D. A., Nabi, B. G., & Mehrdadi, N. (2008). Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection, 89(1), 21–29.

    Article  CAS  Google Scholar 

  • US EPA-3540C. (1996). Soxhlet extraction organics. SW-846 Test methods for evaluating solid waste physical/chemical methods. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3540c.pdf. Accessed 20 June 2012.

  • Vázquez-Luna, D., Castelán-Estrada, M., Rivera-Cruz, M. C., Ortiz-Ceballos, A. I., & Izquierdo, F. (2010). Crotalaria incana L. y Leucaena leucocephala Lam. (LEGUMINOSAE): Especies indicadoras de toxicidad por hidrocarburos de petróleo en el suelo. Revista Internacional de Contaminación Ambiental, 26(3), 183–191.

    Google Scholar 

  • Vázquez-Yanes, C., Batis Muñoz, A. I., Alcocer Silva, M. I., Gual Díaz M. & Sánchez Dirzo, C. (1999) Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. Reporte técnico del proyecto J084. CONABIO—Instituto de Ecología, UNAM http://www.conabio.gob.mx/conocimiento/info_especies/arboles/doctos/introd-J084.html. Accessed 20 may 2013.

  • Vozzo, J. A. (2002). Tropical tree seed manual. Agricultural Handbook 721. Washington, DC: United States Department of Agriculture, Forest Service.

    Google Scholar 

  • Walton, B. T., Guthrie, E. A., & Hoylman, A. M. (1994). Toxicant degradation in the rhizosphere. In T. A. Anderson & J. R. Coats (Eds.), Bioremediation through rhizosphere technology (ACS Symposium Series, pp. 11–26). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • White Jr., P. M., Wolf, D. C., Thoma, G. J. & Reynold, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air, and Soil Pollution, 169, 207–220.

    Google Scholar 

  • Zamora-Cornelio, L. F., Ochoa-Gaona, S., Vargas Simón, G., Castellanos Albores, J., & de Jong, B. H. J. (2010). Seed germination and key to seedling identification for six native tree species of wetlands from Southeast Mexico. International Journal of Tropical Biology and Conservation, 58(2), 717–732.

    Google Scholar 

Download references

Acknowledgements

We thank Manuel Mendoza Carranza y Noel Antonio González Valdivia who provided advice on statistical analysis. Aaron Jarquín Sánchez was most helpful with the soil analysis. José Guadalupe Chan-Quijano helped with laboratory activities. The Consejo Nacional de Ciencia y Tecnología (CONACYT) provided a scholarship (207824) for doctoral studies to Isidro Pérez Hernández. El Colegio de la Frontera Sur provided infrastructure and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ochoa-Gaona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Hernández, I., Ochoa-Gaona, S., Adams Schroeder, R.H. et al. Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination. Water Air Soil Pollut 224, 1637 (2013). https://doi.org/10.1007/s11270-013-1637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1637-7

Keywords

Navigation