Skip to main content
Log in

Testing Extractants for Cu, Fe, Mn, and Zn in Tropical Soils Treated with Sewage Sludge for 13 Consecutive Years

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997–98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha−1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0–0.1 and 0.1–0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L−1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L−1 CaCl2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric–perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0–0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L−1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, C. A., van Raij, B., Abreu, M. F., & Paz Gonzalez, A. (2004). Evaluation of manganese and iron availability in soils by a modified ion exchange resin method. Revista Brasileira de Ciência do Solo, 29, 579–584 (in Portuguese).

    Article  Google Scholar 

  • Agbenin, J. O., Abreu, C. A., & van Raij, B. (1999). Extraction of phytoavailable trace metals from tropical soils by mixed ion exchange resin modified with inorganic and organic ligands. Science of the Total Environment, 227, 187–196.

    Article  CAS  Google Scholar 

  • Alcantara, S., Pérez, D. V., Almeida, M. R. A., Silva, G. M., Polidoro, J. C., & Bettiol, W. (2009). Chemical changes and heavy metal partitioning in an Oxisol cultivated with maize (Zea mays, L.) after 5 years disposal of a domestic and an industrial sewage sludge. Water Air and Soil Pollution, 203, 3–16.

    Article  CAS  Google Scholar 

  • Anderson, J. M., & Ingram, J. S. I. (1992). Tropical soil biology and fertility: a handbook of methods. Wallingford, UK: CAB International. 171 pp.

    Google Scholar 

  • Andrade, M.G. (2011) Trace elements As, Ba, Cd, Cu, Hg, Mo, Ni, Pb, Se and Zn in Latosols and maize plants after thirteen annual applications of sewage sludge. Jaboticabal, FCAV. 105p (PhD thesis)

  • Basta, N., Ryan, J., & Chaney, R. (2005). Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. Journal of Environmental Quality, 34, 49–63.

    CAS  Google Scholar 

  • Borkert, C. M. (1991). Manganês. In M. E. Ferreira & M. C. P. Cruz (Eds.), Micronutrients in an agriculture (pp. 173–190). Piracicaba: Potafos; CNPq.

    Google Scholar 

  • Brady, N. C. (1989). Nature and soil properties (7th ed., p. 878). Rio de Janeiro: Freitas Bastos (in Portuguese).

    Google Scholar 

  • Brouwere, K., & Smolders, E. (2006). Yield response of crops amended with sewage sludge in the field is more affected by sludge properties than by final soil metal concentration. European Journal of Soil Science, 57, 858–867.

    Article  Google Scholar 

  • Brun, L. A., Maillet, J., Richarte, J., Herrmann, P., & Remy, J. C. (1998). Relationships between extractable copper soil properties and copper uptake by wild plants in vineyard soils. Environmental Pollution, 102, 151–161.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., Gorecka, H., & Gorecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment, 337, 137–182.

    Article  Google Scholar 

  • Cuevas, G., Martínez, F., & Walter, I. (2003). Field-grown maize (Zea mays L.) with composted sewage sludge. Effects on soil and grain quality. Spanish Journal of Agricultural Research, 1, 111–119.

    Google Scholar 

  • Dolgen, D., Alpaslan, M. N., & Delen, N. (2007). Agricultural recycling of treatment-plant sludge: a case study for a vegetable processing factory. Journal of Environmental Management, 84, 274–281.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevič, V., Šebek, O., & Grygar, T. (2007). Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—analytical and thermodynamic approaches. Analytica Chimica Acta, 602, 131–140.

    Article  CAS  Google Scholar 

  • Guan, T. X., He, H. B., Zhang, X. D., & Bai, Z. (2011). Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere, 82, 215–222.

    Article  CAS  Google Scholar 

  • Hammer, D., & Keller, C. (2002). Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality, 31, 1561–1569.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soil and plants (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Kashem, M. A., Singh, B. R., Kondo, T., Imamul Huq, S. M., & Kawai, S. (2007). Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and non-contaminated soils. International journal of Environmental Science and Technology, 4, 169–176.

    CAS  Google Scholar 

  • Lavado, R. S., Rodríguez, M. B., & Taboada, M. A. (2005). Treatment with biosolids affects soil availability and plant uptake of potentially toxic elements. Agriculture, Ecosystems and Environment, 109, 360–364.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Logan, T. J., Lindsay, B. J., Goins, L. E., & Ryan, J. A. (1997). Field assessment of sludge metal bioavailability to crops: sludge rate response. Journal of Envionmental Quality, 26, 534–550.

    Article  CAS  Google Scholar 

  • Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Assessment of nutritional status of plants: principles and applications (2nd ed.). Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato. 319p (in Portuguese).

    Google Scholar 

  • Mantovi, P., Baldoni, G., & Toderi, G. (2005). Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Research, 39, 289–296.

    Article  CAS  Google Scholar 

  • Marchi, G., Guilherme, L. R. G., Chang, A. C., & Nascimento, C. W. A. (2009). Heavy metals extractability in a soil amended with sewage sludge. Scientia Agricola, 66, 643–649.

    Article  Google Scholar 

  • McBride, M. B. (2001). Cupric ion activity in peat soil as a toxicity indicator for maize. Journal of Environmental Quality, 30, 78–84.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1984). Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416.

    Article  CAS  Google Scholar 

  • Mulchi, C. L., Adamu, C. A., Bell, P. F., & Chaney, R. L. (1991). Residual heavy metal concentrations in sludge-amended coastal plain soils: I. Comparison of extractants. Communications in Soil Science and Plant Analysis, 22, 919–941.

    Article  CAS  Google Scholar 

  • Murakami, M., & Ae, N. (2009). Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). Journal of Hazardous Materials, 162, 1185–1192.

    Article  CAS  Google Scholar 

  • Nelson, W. L., Melich, A., & Winters, E. (1953). The development, evaluation and use of soil test for phosphorus availability. Agronomy, 4, 153–188.

    CAS  Google Scholar 

  • Nogueirol, R. C., Alleoni, L. R. F., Nachtigall, G. R., & Melo, G. W. (2010). Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil. Journal of Hazardous Materials, 181, 931–937.

    Article  CAS  Google Scholar 

  • Obbard, J. P., Sauerbeck, D. R., & Jones, K. C. (1993). Rhizobium leguminosarum bv. trifolii in soils amended with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry, 25, 227–231.

    Article  CAS  Google Scholar 

  • Parkinson, R. J., Fuller, M. P., & Groenhof, A. C. (1999). An evaluation of greenwaste compost for the production of forage maize (Zea mays L.). Compost Science & Utilization, 7, 72–80.

    Google Scholar 

  • Pires, A. M. M., & Mattiazzo, M. E. (2003). Biosolids conditioning and the availability of Cu and Zn for rice. Scientia Agricola, 60, 161–166.

    Article  Google Scholar 

  • Raij, B. van, Cantarella, H., Quaggio, J.A., & Furlani, A.M.C. (1996) Lime and fertilizer recommendations for the state of São Paulo. Campinas Instituto Agronômico, 285p (in Portuguese).

  • Raij, B. van, Andrade, J.C., Cantarella, H., & Quaggio, J.A. (2001) Chemical analysis to evaluate the fertility of tropical soils. Campinas Instituto Agronômico, 285p (in Portuguese).

  • Rodrigues, M. R. L., Malavolta, E., & Moreira, A. (2001). Comparison of extracting solution for iron and manganese in soils of the Amazon Region. Pesquisa Agropecuária Brasileira, 36, 143–149 (in Portuguese).

    Article  Google Scholar 

  • Sanchez-Monedero, M. A., Mondini, C., de Nobili, M., Leita, L., & Roig, A. (2004). Land application of biosolids. Soil response to different stabilization degree of the treated organic matter. Waste Management, 244, 325–332.

    Article  Google Scholar 

  • SAS INSTITUTE. (2002). SAS: user’s guide: statistics (6th ed.). Cary: SAS Institute.

    Google Scholar 

  • Sharma, S., Sharma, P., & Bhattacharyya, A. K. (2010). Accumulation of heavy metals in wheat (Triticum aestivum L.) seedlings grown in soils amended with electroplating industrial sludge. Communications in Soil Science and Plant Analysis, 41, 2505–2516.

    Article  CAS  Google Scholar 

  • Shirvani, M., Shariatmadari, H., & Kalbasi, M. (2007). Kinetics of cadmium desorption from fibrous silicate clay minerals: influence of organic ligands and aging. Applied Clay Science, 37, 175–184.

    Article  CAS  Google Scholar 

  • Shober, A., Stehouwer, R., & McNeal, K. (2002) Agricultural utilization of biosolids in Pennsylvania: Assessment of biosolids effects on soil and crop quality: Pennsylvania Department of Environmental Protection.

  • Soriano-Disla, J. M., Gómez, I., Navarro-Pedreño, J., & Lag-Brotons, A. (2010). Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant and Soil, 327, 303–314.

    Article  CAS  Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Analyses of soils, plants and other materials. Brazil, Porto Alegre: Department of Soils, Federal University of Rio Grande do Sul (in Portuguese).

    Google Scholar 

  • Trannin, I. C. B., Siqueira, J. O., & Moreira, F. M. S. (2005). Agronomic assessment of an industrial biosolid for corn crop. Pesquisa Agropecuária Brasileira, 40, 261–269 (in Portuguese).

    Article  Google Scholar 

  • Udom, B. E., Mbagwu, J. S., Adesodun, J. K., & Agbim, N. N. (2004). Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environment International, 30, 467–470.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments—an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission-of-the-European-Communities. Internation Journal of Environmental Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • Wang, S., Nan, Z., Liu, X., Li, Y., Qin, S., & Ding, H. (2009). Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma, 152, 290–295.

    Article  CAS  Google Scholar 

  • White, C. S., Loftin, S. R., & Aguilar, R. (1997). Application of biosolids to degraded semiarid rangeland: nine year response. Journal of Environmental Quality, 26, 1663–1671.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) provided a Ph.D. grant to the first author and Brazil’s National Council for Scientific and Technological Development (CNPq) provided a research grant for the second and third authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Corrêa Nogueirol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueirol, R.C., de Melo, W.J. & Alleoni, L.R.F. Testing Extractants for Cu, Fe, Mn, and Zn in Tropical Soils Treated with Sewage Sludge for 13 Consecutive Years. Water Air Soil Pollut 224, 1557 (2013). https://doi.org/10.1007/s11270-013-1557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1557-6

Keywords

Navigation