Skip to main content
Log in

Assessing Limitations for PAH Biodegradation in Long-Term Contaminated Soils Using Bioaccessibility Assays

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are generated by a range of industrial processes including petroleum and gas production and are often found in high concentrations at industrial sites. Once PAHs enter the environment, the predominant mechanisms for removal are biological via microbial activity. However, PAHs have the potential to partition onto soil organic matter thereby decreasing their bioavailability to microorganisms and limiting their degradation. This explanation was felt to be the reason for a lack of evidence of PAH biodegradation in a study of long-term contaminated soils. To test the hypothesis that bioavailability was a limiting factor for biodegradation in theses soils, PAH bioavailability was determined using nonexhaustive extraction (propanol, butanol, hydrooxypropyl-β-cyclodextrin) and oxidation (persulfate) methodologies designed to determine the fraction of contaminants within soil which are available for biological uptake. The assays gave varying results for each soil, and no specific trends across all soils were observed. PAH bioaccessibility, derived from the HP-β-CD assay which has been the most extensively tested in the literature, was estimated to be between 0 and 10 % for most soils, with the exception of pyrene, indicating that a large fraction of the soil-borne PAHs at the site are not available to microorganisms and that bioavailability limitations may be a primary cause for the lack of observed biodegradation at this site. These results highlight the importance of bioavailability to PAH degradation as well as the relevance of utilizing an assay that has been evaluated across many soil conditions and parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Rahman, M. S., Skowronski, G. A., & Turkall, R. M. (1992). Effects of soil on the bioavailability of m-xylene after oral or dermal exposure. Soil and Sediment Contamination, 1(2), 183–196.

    Article  CAS  Google Scholar 

  • Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science and Technology, 34(20), 4259–4265.

    Article  CAS  Google Scholar 

  • Allan, I. J., Semple, K. T., Hare, R., & Reid, B. J. (2006). Prediction of mono-and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environmental Pollution, 144(2), 562–571.

    Article  CAS  Google Scholar 

  • Amellal, N., Portal, J. M., & Berthelin, J. (2001). Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Applied Geochemistry, 16(14), 1611–1619.

    Article  CAS  Google Scholar 

  • Bonten, L. T. C. (2001). Improving bioremediation of PAH contaminated soils by thermal pretreatment. Ph.D. Thesis, Wageningen University, The Netherlands

  • Bosma, T. N. P., Middeldorp, P. J. M., Schraa, G., & Zehnder, A. J. B. (1996). Mass transfer limitation of biotransformation: quantifying bioavailability. Environmental Science and Technology, 31(1), 248–252.

    Article  Google Scholar 

  • Bowmer, K. H. (1991). Atrazine persistence and toxicity in two irrigated soils of Australia. Soil Research, 29(2), 339–350.

    Article  CAS  Google Scholar 

  • Breedveld, G. D., & Karlsen, D. A. (2000). Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Applied Microbiology and Biotechnology, 54(2), 255–261.

    Article  CAS  Google Scholar 

  • Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F., & Duarte, A. C. (2012). Levels, sources and potential human health risks of organic pollutants in urban soils. Science of the Total Environment, 430, 184–192.

    Article  CAS  Google Scholar 

  • Caldini, G., Cenci, G., Manenti, R., & Morozzi, G. (1995). The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Applied Microbiology and Biotechnology, 44(1), 225–229.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2), 351–368.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology, 19(5), 324–333.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E., & Sutherland, J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2079–2110). Berlin: Springer.

    Chapter  Google Scholar 

  • Chung, N., & Alexander, M. (2002). Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 48(1), 109–115.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Rigterink, H., Ferdinandy, M. M. A., & Van Noort, P. C. M. (1998). Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environmental Science and Technology, 32(7), 966–970.

    Article  CAS  Google Scholar 

  • Cuypers, C., Grotenhuis, T., Joziasse, J., & Rulkens, W. (2000). Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environmental Science and Technology, 34(10), 2057–2063.

    Article  CAS  Google Scholar 

  • Cuypers, C., Pancras, T., Grotenhuis, T., & Rulkens, W. (2002). The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere, 46(8), 1235–1245.

    Article  CAS  Google Scholar 

  • Doick, K. J., Dew, N. M., & Semple, K. T. (2005). Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environmental Science and Technology, 39(22), 8858–8864.

    Article  CAS  Google Scholar 

  • Doick, K. J., Clasper, P. J., Urmann, K., & Semple, K. T. (2006). Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environmental Pollution, 144(1), 345–354.

    Article  CAS  Google Scholar 

  • Erickson, D. C., Loehr, R. C., & Neuhauser, E. F. (1993). PAH loss during bioremediation of manufactured gas plant site soils. Water Research, 27(5), 911–919.

    Article  CAS  Google Scholar 

  • Fiala, Z., Vyskocil, A., Krajak, V., Masin, V., Emminger, S., Srb, V., et al. (1999). Polycyclic aromatic hydrocarbons, I. Environmental contamination and environmental exposure. Acta Medica, 42(2), 77–89.

    CAS  Google Scholar 

  • Green, C. T., & Scow, K. M. (2000). Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeology Journal, 8(1), 126–141.

    Article  CAS  Google Scholar 

  • Habe, H., & Omori, T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, Biotechnology, and Biochemistry, 67(2), 225–307.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1), 1–15.

    Article  CAS  Google Scholar 

  • Harvey, R. G. (1996). Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycyclic Aromatic Compounds, 9(1–4), 1–23.

    Article  CAS  Google Scholar 

  • Heijden, S. A., & Jonker, M. T. O. (2009). PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environmental Science and Technology, 43(10), 3757–3763.

    Article  Google Scholar 

  • Hickman, Z. A., Swindell, A. L., Allan, I. J., Rhodes, A. H., Hare, R., Semple, K. T., et al. (2008). Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Environmental Pollution, 156(3), 1041–1045.

    Article  CAS  Google Scholar 

  • Hinga, K. R. (2003). Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Marine Pollution Bulletin, 46(4), 466–474.

    Article  CAS  Google Scholar 

  • Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2002). Microbial factors rather than bioavailability limit the rate and extent of PAH biodegradation in aged crude oil contaminated model soils. Bioremediation Journal, 6(4), 321–336.

    Article  CAS  Google Scholar 

  • Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2003). Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environmental Toxicology and Chemistry, 22(12), 2853–2860.

    Article  CAS  Google Scholar 

  • Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2004). Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation, 15(4), 261–274.

    Article  CAS  Google Scholar 

  • Isaacson, P. J., & Frink, C. R. (1984). Nonreversible sorption of phenolic compounds by sediment fractions: the role of sediment organic matter. Environmental Science and Technology, 18(1), 43–48.

    Article  CAS  Google Scholar 

  • Jacques, R. J. S., Santos, E. C., Bento, F. M., Peralba, M. C. R., Selbach, P. A., Sá, E. L. S., et al. (2005). Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. International Biodeterioration and Biodegradation, 56(3), 143–150.

    Article  CAS  Google Scholar 

  • Jones, K. C., Stratford, J. A., Tidridge, P., Waterhouse, K. S., & Johnston, A. E. (1989). Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution. Environmental Pollution, 56(4), 337–351.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Megharaj, M., & Naidu, R. (2000). Bioavailability: the major challenge (constraint) to bioremediation of organically contaminated soils. In D. Wise, D. J. Trantolo, E. J. Cichon, H. I. Inyang, & U. Stottmeister (Eds.), Remediation engineering of contaminated soils (pp. 217–241). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Juhasz, A. L., Waller, N., & Stewart, R. (2005). Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays. Bioremediation Journal, 9(2), 99–114.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Waller, N., Stewart, R., & Weber, J. (2010). Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environmental Pollution, 158(2), 585–591.

    Article  CAS  Google Scholar 

  • Katayama, A., Bhula, R., Burns, G. R., Carazo, E., Felsot, A., Hamilton, D., et al. (2010). Bioavailability of xenobiotics in the soil environment. In Reviews of environmental contamination and toxicology, vol. 203 (pp. 1–86). New York: Springer.

    Chapter  Google Scholar 

  • Kelsey, J. W., & Alexander, M. (1997). Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environmental Toxicology and Chemistry, 16(3), 582–585.

    Article  CAS  Google Scholar 

  • Kelsey, J. W., Kottler, B. D., & Alexander, M. (1996). Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environmental Science and Technology, 31(1), 214–217.

    Article  Google Scholar 

  • Khan, S. U., & Ivarson, K. C. (1982). Release of soil bound (nonextractable) residues by various physiological groups of microorganisms. Journal of Environmental Science and Health. Part. B, 17(6), 737–749.

    Article  CAS  Google Scholar 

  • Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D., & Cerniglia, C. E. (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. Journal of Bacteriology, 189(2), 464–472.

    Article  CAS  Google Scholar 

  • Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H., et al. (1994). Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. Journal of Bacteriology, 176(8), 2439–2443.

    CAS  Google Scholar 

  • Lee, P. H., Ong, S. K., Golchin, J., & Nelson, G. L. (2001). Use of solvents to enhance PAH biodegradation of coal tar. Water Research, 35(16), 3941–3949.

    Article  CAS  Google Scholar 

  • Liste, H. H., & Alexander, M. (2002). Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere, 46(7), 1011–1017.

    Article  CAS  Google Scholar 

  • Mahmoudi, N., Slater, G. F., & Fulthorpe, R. R. (2011). Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Canadian Journal of Microbiology, 57(8), 623–628.

    Article  CAS  Google Scholar 

  • Mahmoudi, N., Fulthorpe, R. R., Burns, L., Mancini, S., & Slater, G. F. (2012). Assessing microbial carbon sources and potential PAH degradation using natural abundance 14C analysis. Environmental Pollution (in press).

  • Maier, R. (2000). Bioavailability and its importance to bioremediation. In J. J. Valdes (Ed.), Bioremediation (pp. 59–78). Massachusetts: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Menn, F. M., Applegate, B. M., & Sayler, G. S. (1993). NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Applied and Environmental Microbiology, 59(6), 1938–1942.

    CAS  Google Scholar 

  • Morrison, D. E., Robertson, B. K., & Alexander, M. (2000). Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environmental Science and Technology, 34(4), 709–713.

    Article  CAS  Google Scholar 

  • Nam, K., & Alexander, M. (1998). Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environmental Science and Technology, 32(1), 71–74.

    Article  CAS  Google Scholar 

  • Papadopoulos, A., Paton, G. I., Reid, B. J., & Semple, K. T. (2007a). Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Journal of Environmental Monitoring, 9(6), 516–522.

    Article  CAS  Google Scholar 

  • Papadopoulos, A., Semple, K. T., & Reid, B. J. (2007b). Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique. Journal of Environmental Quality, 36(5), 1385–1391.

    Article  CAS  Google Scholar 

  • Pavanello, S., & Lotti, M. (2012). Internal exposure to carcinogenic polycyclic aromatic hydrocarbons and DNA damage. Archives of Toxicology, 86(11), 1–3.

    Google Scholar 

  • Peng, R. H., Xiong, A. S., Xue, Y., Fu, X. Y., Gao, F., Zhao, W., et al. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiology Reviews, 32(6), 927–955.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., & Xing, B. (1995). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology, 30(1), 1–11.

    Article  Google Scholar 

  • Pinyakong, O., Habe, H., & Omori, T. (2003). The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). Journal of General and Applied Microbiology, 49(1), 1–19.

    Article  CAS  Google Scholar 

  • Reid, B. J., Stokes, J. D., Jones, K. C., & Semple, K. T. (2000). Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environmental Science and Technology, 34(15), 3174–3179.

    Article  CAS  Google Scholar 

  • Robertson, B. K., & Alexander, M. (1998). Sequestration of DDT and dieldrin in soil: disappearance of acute toxicity but not the compounds. Environmental Toxicology and Chemistry, 17(6), 1034–1038.

    Article  CAS  Google Scholar 

  • Rostami, I., & Juhasz, A. L. (2011). Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Critical Reviews in Environmental Science and Technology, 41(7), 623–656.

    Article  Google Scholar 

  • Roy, T. A., & Singh, R. (2001). Effect of soil loading and soil sequestration on dermal bioavailability of polynuclear aromatic hydrocarbons. Bulletin of Environmental Contamination and Toxicology, 67(3), 324–331.

    Article  CAS  Google Scholar 

  • Samanta, S. K., Chakraborti, A. K., & Jain, R. K. (1999). Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology, 53(1), 98–107.

    Article  CAS  Google Scholar 

  • Scribner, S. L., Boyd, S. A., Benzing, T. R., & Sun, S. (1992). Desorption and unavailability of aged simazine residues in soil from a continuous corn field. Journal of Environmental Quality, 21(1), 115–120.

    Article  CAS  Google Scholar 

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 38(12), 228–231.

    Article  Google Scholar 

  • Semple, K. T., Doick, K. J., Wick, L. Y., & Harms, H. (2007). Microbial interactions with organic contaminants in soils: definitions, processes and measurement. Environmental Pollution, 150(1), 166–176.

    Google Scholar 

  • Shuttleworth, K. L., & Cerniglia, E. (1995). Environmental aspects of PAH biodegradation. Applied Biochemistry and Biotechnology, 54(1), 291–302.

    Article  CAS  Google Scholar 

  • Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25(1), 99–121.

    Article  CAS  Google Scholar 

  • Slater, G. F., White, H. K., Eglinton, T. I., & Reddy, C. M. (2005). Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis. Environmental Science and Technology, 39(8), 2552–2558.

    Article  CAS  Google Scholar 

  • Stokes, J. D., Wilkinson, A., Reid, B. J., Jones, K. C., & Semple, K. T. (2005). Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Environmental Toxicology and Chemistry, 24(6), 1325–1330.

    Article  CAS  Google Scholar 

  • Stroud, J. L., Paton, G. I., & Semple, K. T. (2009). Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Chemosphere, 74(4), 563–567.

    Article  CAS  Google Scholar 

  • Tang, J., & Alexander, M. (1999). Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environmental Toxicology and Chemistry, 18(12), 2711–2714.

    Article  CAS  Google Scholar 

  • Thibault, S. L., Anderson, M., & Frankenberger, W. T. (1996). Influence of surfactants on pyrene desorption and degradation in soils. Applied and Environmental Microbiology, 62(1), 283.

    CAS  Google Scholar 

  • Tiehm, A. (1994). Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology, 60(1), 258.

    CAS  Google Scholar 

  • Ting, W. T. E., Yuan, S. Y., Wu, S. D., & Chang, B. V. (2011). Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. International Biodeterioration and Biodegradation, 65(1), 238–242.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.

    Article  Google Scholar 

  • van Herwijnen, R., Wattiau, P., Bastiaens, L., Daal, L., Jonker, L., Springael, D., et al. (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 154(3), 199–206.

    Article  Google Scholar 

  • Volkering, F., Breure, A. M., van Andel, J. G., & Rulkens, W. H. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 61(5), 1699–1705.

    CAS  Google Scholar 

  • Wang, J., Chen, S., Tian, M., Zheng, X., Gonzales, L., Ohura, T., et al. (2012). Inhalation cancer risk associated with exposure to complex polycyclic aromatic hydrocarbon mixtures in an electronic waste and urban area in South China. Environmental Science and Technology, 46(17), 9745–9752.

    Article  CAS  Google Scholar 

  • Weissenfels, W. D., Klewer, H. J., & Langhoff, J. (1992). Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Applied Microbiology and Biotechnology, 36(5), 689–696.

    Article  CAS  Google Scholar 

  • Xu, H. X., Wu, H. Y., Qiu, Y. P., Shi, X. Q., He, G. H., Zhang, J. F., et al. (2011). Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation, 22(2), 335–345.

    Article  CAS  Google Scholar 

  • Yang, J. J., Roy, T. A., Krueger, A. J., Neil, W., & Mackerer, C. R. (1989). In vitro and in vivo percutaneous absorption of benzo[a]pyrene from petroleum crude-fortified soil in the rat. Bulletin of Environmental Contamination and Toxicology, 43(2), 207–214.

    Article  CAS  Google Scholar 

  • Yuan, S. Y., Chang, J. S., Yen, J. H., & Chang, B. V. (2001). Biodegradation of phenanthrene in river sediment. Chemosphere, 43(3), 273–278.

    Article  CAS  Google Scholar 

  • Zhang, W., Bouwer, E. J., & Ball, W. P. (1998). Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation. Ground Water Monitoring & Remediation, 18(1), 126–138.

    Article  Google Scholar 

  • Zhu, H., & Aitken, M. D. (2010). Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environmental Science and Technology, 44(19), 7260–7265.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank John Weber (University of South Australia) and Jennie Kirby (McMaster University) for their laboratory assistance and technical expertise. Thank you also to Leanne Burns, Silvia Mancini and Gillian Roos of Golder Associates Ltd. for providing the soil samples used in this study. This work was funded by grants to GFS and a scholarship to NM from the Natural Sciences & Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg F. Slater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoudi, N., Slater, G.F. & Juhasz, A.L. Assessing Limitations for PAH Biodegradation in Long-Term Contaminated Soils Using Bioaccessibility Assays. Water Air Soil Pollut 224, 1411 (2013). https://doi.org/10.1007/s11270-012-1411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1411-2

Keywords

Navigation