Skip to main content
Log in

Decolorization and Degradation of Reactive Dye in Aqueous Solution by Ozonation in a Semi-batch Bubble Column Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The decolorization and degradation of anionic sulphonated azo dye (Reactive orange 16 (RO16)), which is suspected to be carcinogenic, were investigated using ozone. The decolorization process of the reactive dye was carried out by bubbling ozone at the bottom of a bubble column reactor containing the dye solution. The effect of pH, reaction time, dye concentration, ozone concentration, and decolorization time was studied. Also, degradation products and possible degradation mechanism were investigated. The results showed that ozonation was a highly effective way to remove color from wastewater. The color of a synthetic waste solution containing water-soluble reactive dye was reduced to 69.69 % under the basic condition (pH 12), with complete RO16 degradation occurring in 8 min. Ozone consumption continued for a further 16 min after which time most of the degradation reactions were complete. Kinetic studies showed that direct ozonation of the aqueous dyes represented a pseudo-first-order reaction with respect to the dye. The apparent rate constant increased with both the applied ozone dose and higher pH values and declined logarithmically with the initial dye concentration. Intermediates such as 6-acetylamino-3-aminonaphthalene-2-sulfonic acid, 2-(4-nitrosophenyl) sulfonylethyl hydrogen sulfate, and 6-acetamido-4-hydroxy-3-nitroso naphthalene-2-sulfonic acid were detected by gas chromatograph coupled with mass spectrometry in the absence of pH buffer, while nitrate and sulfate ions and formic, acetic, and oxalic acids were detected by ion chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • APHA, et al. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington DC: American Public Health Association Publ.

    Google Scholar 

  • Ball, P., & Nicholls, C. H. (1982). Azo-hydrazone tautomerism of hydroxyazo compounds—A review. Dyes and Pigments, 3(1), 5–26. doi:10.1016/0143-7208(82)80010-7.

    Article  CAS  Google Scholar 

  • Benitez, F. J., Acero, J. L., Gonzalez, T., & Garcia, J. (2001). Ozonation and biodegradation processes in batch reactor treating black table olives washing wastewater. Industrial and Engineering Chemistry Research, 40, 3144–3151. doi:10.1021/ie000735c.

    Article  CAS  Google Scholar 

  • Benitez, F. J., Beltranheredia, J., Acero, J. L., & Pinilla, M. L. (1997). Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills. Industrial and Engineering Chemistry Research, 36, 638–644. doi:10.1021/ie9600250.

    Article  CAS  Google Scholar 

  • Carrière, J., Jones, J. P., & Broadbent, A. D. (1993). Decolorization of textile dye solutions. Ozone Science and Engineering, 15(3), 189–200. doi:10.1080/01919519308552483.

    Article  Google Scholar 

  • Chang, M. W., & Chern, J. M. (2010). Decolorization of peach red azo dye, HF6 by Fenton reaction: Initial rate analysis. Journal of the Taiwan Institute of Chemical Engineers, 41(2), 221–228. doi:10.1016/j.jtice.2009.08.009.

    Article  CAS  Google Scholar 

  • Choi, J. W., Song, H., Lee, W., Koo, K. K., Han, C., & Na, B. K. (2004). Reduction of COD and color of acid and reactive dyestuff wastewater using ozone. Korean Journal of Chemical Engineering, 21(2), 398–403. doi:10.1007/bf02705427.

    Article  CAS  Google Scholar 

  • Chu, W., & Ma, C. W. (2000). Quantitative prediction of direct and indirect dye ozonation kinetics. Water Research, 34(12), 3153–3160. doi:10.1016/s0043-1354(00)00043-9.

    Article  CAS  Google Scholar 

  • El-Din, M. G., & Smith, D. W. (2002). Ozonation of Kraft pulp mill effluents: Process dynamics. Journal of Environmental Engineering and Science, 1, 45–57. doi:10.1139/s01-001.

    Article  CAS  Google Scholar 

  • Elovitz, M. S., & von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct Concept. Ozone: Science & Engineering, 21(3), 239–260. doi:10.1080/01919519908547239.

    CAS  Google Scholar 

  • Fanchiang, J.-M., & Tseng, D.-H. (2009). Degradation of anthraquinone dye C.I reactive blue 19 in aqueous solution by ozonation. Chemosphere, 77(2), 214–221. doi:10.1016/j.chemosphere.2009.07.038.

    Article  CAS  Google Scholar 

  • Gomes, A. C., Nunes, J. C., & Simões, R. M. S. (2010). Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. Journal of Hazardous Materials, 178(1–3), 57–65. doi:10.1016/j.jhazmat.2010.01.043.

    Article  CAS  Google Scholar 

  • Gorg, S., & Adams, C. (2002). Effect of pH and gas-phase ozone concentration on the decolorization efficiency of common textile dyes. Journal of Environmental Engineering, 128(3), 293–298. doi:10.1061/(ASCE)0733-9372.

    Article  Google Scholar 

  • Gurol, M. D., & Nekouinaini, S. (1984). Kinetic-behaviour of ozone in aqueous-solutions of substituted phenols. Indian Engineering Chemical Fundamental, 23, 54–60.

    Article  CAS  Google Scholar 

  • He, Z., Lin, L., Song, S., Xia, M., Xu, L., & Ying, H. (2008). Mineralization of C.I. reactive blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and Purification Technology, 62(2), 376–381. doi:10.1016/j.seppur.2008.02.005.

    Article  CAS  Google Scholar 

  • Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds. Water Research, 17(2), 173–183. doi:10.1016/0043-1354(83)90098-2.

    Article  Google Scholar 

  • Karrer, N. J., Ryhiner, E., & Heinzle, E. (1997). Applicability test for combined biological-chemical treatment of wastewater containing biorefractory compounds. Water Research, 31, 1013–1020.

    Article  CAS  Google Scholar 

  • Konsova, A. H. (2003). Decolorization of wastewater containing direct dye by ozonation in a bubble column reactor. Desalination, 158, 233–240. doi:10.1016/S0011-9164(03)00458-2.

    Article  Google Scholar 

  • Langlais, B., Reckhow, D. A., & Brink, D. R. (1991). Ozone in water treatment: Application and engineering (pp. 31–54). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Ledakowicz, S. R. (2002). Ozonation of reactive blue 81 in the bubble column. Water Science and Technology, 44(5), 47–52.

    Google Scholar 

  • Liakou, S., Pavlou, S., & Lyberatos, G. (1997). Ozonation of azo dyes. Water Science and Technology, 35, 279–286.

    Article  CAS  Google Scholar 

  • Lόpez-Lόpez, A., Benbelkacem, H., Pic, J. S., & Debellefontaine, H. (2004). Oxidation pathways for ozonation of azo dyes in a semi–batch reactor: A kinetic parameters approach. Environmental Technology, 25(3), 311–321. doi:10.1080/09593330409355465.

    Article  Google Scholar 

  • Lόpez-Lόpez, A., Pic, J. S., & Debbellefontaine, H. (2007). Ozonation of azo dye in a semi-batch reactor: A determination of the molecular and radical contributions. Chemosphere, 66, 2120–2126. doi:10.1016/j.chemosphere.2006.09.025.

    Article  Google Scholar 

  • Mathukumar, M., Selvakumar, N., & Venkata, J. (2001). Effect of dye structure on decolouration of anionic dyes by using ozone. In: Proceedings of the 15th Ozone World Congress of International Ozone Association 2001, London, United Kingdom, 410–421.

  • McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., & Nigam, P. (2001). Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 56(1), 81–87. doi:10.1007/s002530000587.

    Article  CAS  Google Scholar 

  • Nasuha, N., Zurainan, H. Z., Maarof, H. I., Zubir, N. A., & Amri, N. (2011). Effect of cationic and anionic dye adsorption from aqueous solution by using chemically modified papaya seed. International Conference on Environment Science and Engineering, 8, 50–54.

    Google Scholar 

  • Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72(3), 219–226. doi:10.1016/s0960-8524(99)00123-6.

    Article  CAS  Google Scholar 

  • Paprowicz, J., & Słodczyk, S. (1988). Application of biologically activated sorptive columns for textile waste water treatment. Environmental Technology Letters, 9(4), 271–280. doi:10.1080/09593338809384567.

    Article  CAS  Google Scholar 

  • Richardson, M. L. (1983). Dyes—the aquatic environment and the mess made by metabolites. Journal of the Society of Dyers and Colourists, 99, 198–200.

    Article  CAS  Google Scholar 

  • Raghuvanshi, S. P., Singh, R., Kaushik, C. P., & Raghav, A. K. (2005). Removal of textile basic dye from aqueous solutions using sawdust as bio–adsorbent. International Journal of Environmental Studies, 62(3), 329–339. doi:10.1080/0020723042000275150.

    Article  CAS  Google Scholar 

  • Srinivasan, S. V., Rema, T., Chitra, K., Sri Balakameswari, K., Suthanthararajan, R., Uma Maheswari, B., et al. (2009). Decolourisation of leather dye by ozonation. Desalination, 235, 88–92. doi:10.1016/j.desal.2007.07.032.

    Article  CAS  Google Scholar 

  • Song, S., Xu, X., Xu, L., He, Z., Ying, H., & Chen, J. (2008). Mineralization of CI reactive yellow 145 in aqueous solution by ultraviolet-enhanced ozonation. Industrial and Engineering Chemistry Research, 47(5), 1386–1391. doi:10.1021/ie0711628.

    Article  CAS  Google Scholar 

  • Song, S., Ying, H., He, Z., & Chen, J. (2007). Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere, 66(9), 1782–1788. doi:10.1016/j.chemosphere.2006.07.090.

    Article  CAS  Google Scholar 

  • Turhan, K., Durukan, I., Ozturkcan, S. A., & Turgut, Z. (2012). Decolorization of textile basic dye in aqueous solution by ozone. Dyes and Pigments, 92(3), 897–901. doi:10.1016/j.dyepig.2011.07.012.

    Article  CAS  Google Scholar 

  • Turhan, K., & Turgut, Z. (2007). Reducing chemical oxygen demand and decolorization of ozonization of direct dye from synthetic wastewater by ozonization in a batch bubble column reactor. Fresen Environ Bull, 16(7), 821–825.

    CAS  Google Scholar 

  • Turhan, K., & Turgut, Z. (2009a). Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination, 242(1–3), 256–263. doi:10.1016/j.desal.2008.05.005.

    Article  CAS  Google Scholar 

  • Turhan, K., & Turgut, Z. (2009b). Treatment and degradability of direct dyes in textile wastewater by ozonation: A laboratory investigation. Desalination and Water Treatment, 11(1–3), 184–191.

    Article  CAS  Google Scholar 

  • Turhan, K., & Uzman, S. (2008a). Oxidation of aniline using different reaction pathways. Asian Journal of Chemistry, 20(2), 1295–1302.

    CAS  Google Scholar 

  • Turhan, K., & Uzman, S. (2008b). Removal of phenol from water using ozone. Desalination, 229(1–3), 257–263. doi:10.1016/j.desal.2007.09.012.

    Article  CAS  Google Scholar 

  • Wang, C., Yediler, A., Lienert, D., Wang, Z., & Kettrup, A. (2003). Ozonation of an azo dye C.I. remazol black 5 and toxicological assessment of its oxidation products. Chemosphere, 52(7), 1225–1232. doi:10.1016/s0045-6535(03)00331-x.

    Article  CAS  Google Scholar 

  • Wu, C. H., & Ng, H. Y. (2008). Degradation of C.I. reactive red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption. Journal of Hazardous Materials, 152(1), 120–127. doi:10.1016/j.jhazmat.2007.06.073.

    Article  CAS  Google Scholar 

  • Wu, J., Eiteman, M. A., & Law, S. E. (1998). Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater. Journal of Environmental Engineering, 124(3), 272–277.

    Article  Google Scholar 

  • Wu, J., & Wang, T. (2001). Ozonation of aqueous azo dye in a semi-batch reactor. Water Research, 35(4), 1093–1099. doi:10.1016/s0043-1354(00)00330-4.

    Article  CAS  Google Scholar 

  • Yu, C. P., & Yu, Y. H. (2001). Mechanisms of the reaction of ozone with p-nitrophenol. Ozone Science and Engineering, 23(4), 303–312. doi:10.1080/01919510108962013.

    Article  CAS  Google Scholar 

  • Zhang, F., Yediler, A., & Liang, X. (2007). Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. reactive red 120 during ozonation. Chemosphere, 67(4), 712–717. doi:10.1016/j.chemosphere.2006.10.076.

    Article  CAS  Google Scholar 

  • Zhao, W., Shi, H., & Wang, D. (2004). Ozonation of cationic red X-GRL in aqueous solution: Degradation and mechanism. Chemosphere, 57(9), 1189–1199. doi:10.1016/j.chemosphere.2004.08.014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Turhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turhan, K., Ozturkcan, S.A. Decolorization and Degradation of Reactive Dye in Aqueous Solution by Ozonation in a Semi-batch Bubble Column Reactor. Water Air Soil Pollut 224, 1353 (2013). https://doi.org/10.1007/s11270-012-1353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1353-8

Keywords

Navigation