Skip to main content
Log in

Removal of Denim Blue from Aqueous Solutions by Inorganic Adsorbents in a Fixed-Bed Column

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption behavior of denim blue from aqueous solutions in column systems, using both carbonaceous material and Fe-zeolitic tuff (Fe-Z), was determined. The breakthrough data obtained for denim blue adsorption were fitted to the empty-bed contact time, Bohart–Adams, Thomas, and Yoon–Nelson models. The parameters such as breakthrough and saturation times, bed volumes, kinetic constants, adsorption capacities, and adsorbent usage rates (AUR) were determined. The results show that the breakthrough time increases proportionally with increasing bed height, but it decreases as the kinetic constant increases. The adsorption capacity for denim blue for carbonaceous material was higher than Fe-Z. AUR was lower for carbonaceous material than Fe-Z. The results indicated that the carbonaceous material from pyrolysis of sewage sludge is a good adsorbent for denim blue removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad, A. A., & Hameed, B. H. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials, 175, 298–303.

    Article  CAS  Google Scholar 

  • Ahmad, A. L., Chong, M. F., & Bhatia, S. (2006). Prediction of breakthrough curves for adsorption of complex organic solutes present in palm oil mill effluent (POME) on granular activated carbon. Industrial and Engineering Chemistry Research, 45, 6793–6802.

    Article  CAS  Google Scholar 

  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109, 6570–6631.

    Article  CAS  Google Scholar 

  • Cooney, D. O. (1998). Adsorption design for wastewater treatment. USA: Lewis.

    Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. Journal of Hazardous Materials, 167, 1–9.

    Article  CAS  Google Scholar 

  • Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85, 833–846.

    Article  CAS  Google Scholar 

  • Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., et al. (2011). Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters. Desalination, 275, 74–81.

    Article  CAS  Google Scholar 

  • Faki, A., Turan, M., Ozdemir, O., & Turan, A. Z. (2008). Analysis of fixed-bed column adsorption of reactive yellow 176 onto surfactant-modified zeolite. Industrial and Engineering Chemistry Research, 47, 6999–7004.

    Article  CAS  Google Scholar 

  • Faust, S., & Osman, A. (1998). Chemistry of water treatment (2nd ed.). USA: Lewis.

    Google Scholar 

  • Girgis, M. J., Kuczynski, L. E., Berberena, S. M., Boyd, C. A., Kubinski, P. L., Scherholz, M. L., et al. (2008). Removal of soluble palladium complexes from reaction mixtures by fixed-bed adsorption. Organic Process Research and Development, 12, 1209–1217.

    Article  CAS  Google Scholar 

  • Goel, J., Kadirvelu, K., & Rajagopal, C. (2004). Mercury (II) removal from water by coconut shell based activated carbon: batch and column studies. Environmental Technology, 25(2), 141–153.

    Article  CAS  Google Scholar 

  • Gupta, S., & Babu, B. V. (2009). Modeling, simulation, and experimental validation for continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent. Bioresource Technology, 100, 5633–5640.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal—a review. Journal of Environmental Management, 90, 2313–2342.

    Article  CAS  Google Scholar 

  • Gutiérrez-Segura, E., Solache-Ríos, M., & Colín-Cruz, A. (2009). Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge. Journal of Hazardous Materials, 170, 1227–1235.

    Article  Google Scholar 

  • Gutiérrez-Segura, E., Solache-Ríos, M., Fall, C., & Colín-Cruz, A. (2012). Influence of the pH on distribution of denim blue in water Fe-zeolitic tuff system. Separation Science and Technology, 47, 723–728.

    Article  Google Scholar 

  • Han, R., Zou, L., Zhao, X., Xu, Y., Xu, F., Li, Y., et al. (2009). Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chemical Engineering Journal, 149, 123–131.

    Article  CAS  Google Scholar 

  • Hasan, S. H., Ranjan, D., & Talat, M. (2010). Agro-industrial waste ‘wheat bran’ for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. Journal of Hazardous Materials, 181, 1134–1142.

    Article  CAS  Google Scholar 

  • Karadag, D., Turan, M., Akgul, E., Tok, S., & Faki, A. (2007). Adsorption equilibrium and kinetics of reactive black 5 and reactive red 239 in aqueous solution onto surfactant-modified zeolite. Journal of Chemical & Engineering Data, 52, 1615–1620.

    Article  CAS  Google Scholar 

  • Köse, T. E., & Öztürk, N. (2008). Boron removal from aqueous solutions by ion-exchange resin: column sorption–elution studies. Journal of Hazardous Materials, 152, 744–749.

    Article  Google Scholar 

  • Kumar, A., Kumar, S., & Kumar, S. (2003). Adsorption of resorcinol and catechol on granular activated carbon: equilibrium and kinetics. Carbon, 41, 3015–3025.

    Article  CAS  Google Scholar 

  • Liu, C., Tang, Z., Chen, Y., Su, S., & Jiang, W. (2010). Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite. Bioresource Technology, 101, 1097–1101.

    Article  CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87, 105–145.

    Article  Google Scholar 

  • Mittal, A., Kaur, D., & Mittal, J. (2009). Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. Journal of Hazardous Materials, 163, 568–577.

    Article  CAS  Google Scholar 

  • Otero, M., Rozada, F., Calvo, L. F., Garcia, A. I., & Moran, A. (2003). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes and Pigments, 57, 55–65.

    Article  CAS  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70–80.

    Article  CAS  Google Scholar 

  • Ramalho, R. (2003). Tratamiento de Aguas Residuales. Mexico: Reverte.

    Google Scholar 

  • Rozada, F., Otero, M., Morán, A., & Garcia, A. I. (2005). Activated carbons from sewage sludge and discarded tyres: production and optimization. Journal of Hazardous Materials, B124, 181–191.

    Article  Google Scholar 

  • Rozada, F., Otero, M., García, A. I., & Morán, A. (2007). Application in fixed-bed systems of adsorbents obtained from sewage sludge and discarded tires. Dyes and Pigments, 72, 47–56.

    Article  Google Scholar 

  • Sismanoglu, T., Kismir, Y., & Karakus, S. (2010). Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite. Journal of Hazardous Materials, 184, 164–169.

    Article  CAS  Google Scholar 

  • Srinivasan, A., & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 91, 1915–1929.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. New York: McGraw-Hill.

    Google Scholar 

  • Torres-Perez, J., Solache-Rios, M., & Colin-Cruz, A. (2008). Sorption and desorption of dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 187, 303–313.

    Article  CAS  Google Scholar 

  • Trujillo-Reyes, J., Sánchez-Mendieta, V., Colín-Cruz, A., & Morales-Luckie, R. (2010). Removal of indigo blue in aqueous solution using Fe/Cu nanoparticles and C/Fe-Cu nanoalloy composites. Water, Air, and Soil Pollution, 207, 307–317.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83, 1446–1456.

    Article  CAS  Google Scholar 

  • Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153, 22–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the financial support from CONACYT, project 131174Q and scholarship grant no. 170350 for EGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Segura, E., Colín-Cruz, A., Solache-Ríos, M. et al. Removal of Denim Blue from Aqueous Solutions by Inorganic Adsorbents in a Fixed-Bed Column. Water Air Soil Pollut 223, 5505–5513 (2012). https://doi.org/10.1007/s11270-012-1299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1299-x

Keywords

Navigation