Skip to main content
Log in

Effects of Wood Amendments on the Degradation of Terbuthylazine and on Soil Microbial Community Activity in a Clay Loam Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The herbicide terbuthylazine is widely used within the EU; however, its frequent detection in surface and groundwater, together with its intrinsic toxicological properties, may pose a risk both for human and environmental health. Organic amendments have recently been proposed as a possible herbicide sorbent in soil, in order to limit herbicide movement from soil to water. The environmental fate of terbuthylazine depends not only in its mobility but also in its persistence. The latter is directly dependent on microbial degradation. For this reason, the effects of pine and oak residues on terbuthylazine soil microbial community functioning and on the potential of this community for terbuthylazine degradation were studied. For this purpose, degradation kinetics, soil dehydrogenase activity and the number of live bacteria were assessed in a clay loam soil treated with terbuthylazine and either amended with pine or oak wood or unamended (sterilised and non-sterilised). At day 65, 85 % of the herbicide applied still persisted in the sterile soil, 73 % in the pine-amended one and 63 % in the oak-amended and unamended ones. Pine residues increased the sorption of terbuthylazine to soil and hampered microbial degradation owing to its high terbuthylazine sorption capacity and a decrease in the bioavailability of the herbicide. On the contrary, in the presence of oak residues, the herbicide sorption did not increase significantly. The overall results confirm the active role of the soil microbial community in terbuthylazine degradation in amended and unamended soils and in a liquid enrichment culture performed using an aliquot of the same soil as the inoculum. In this clay loam soil, in the absence of amendments, the herbicide was found to be quite persistent (t 1/2 > 95 days), while in the enrichment culture, the same natural soil bacterial community was able to halve terbuthylazine in 24 days. The high terbuthylazine persistence in this soil was presumably ascribable to its texture and in particular to the mineralogy of the clay fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnarson, T. S., & Keil, R. G. (2000). Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry, 71, 309–320.

    Article  CAS  Google Scholar 

  • Bailey, G. W., White, J. L., & Rothberg, T. (1986). Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate. In S. Saltzman & B. Yaron (Eds.), Pesticides in soil (pp. 75–87). New York: Van Nostrand Reinhold Company Inc.

    Google Scholar 

  • Barra Caracciolo, A., Giuliano, G., Di Corcia, A., Crescenzi, C., & Silvestri, C. (2001). Microbial degradation of terbuthylazine in surface soil and subsoil at two different temperatures. Bulletin of Environmental Contamination and Toxicology, 67, 815–820.

    Article  Google Scholar 

  • Barra Caracciolo, A., Giuliano, G., Grenni, P., Cremisini, C., Ciccoli, R., & Ubaldi, C. (2005a). Effect of urea on degradation of terbuthylazine in soil. Environmental Toxicology and Chemistry, 24, 1035–1040.

    Article  Google Scholar 

  • Barra Caracciolo, A., Grenni, P., Ciccoli, R., Di Landa, G., & Cremisini, C. (2005b). Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization. Pest Management Science, 61, 863–869.

    Article  Google Scholar 

  • Barra Caracciolo, A., Grenni, P., Saccá, M. L., Amalfitano, S., Martín, M., & Gibello, A. (2010). The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiology Ecology, 71, 127–136.

    Article  Google Scholar 

  • Bottoni, P., Keizer, J., & Funari, E. (1996). Leaching indices of some major triazine metabolites. Chemosphere, 32, 1401–1411.

    Article  CAS  Google Scholar 

  • Briceño, G., Palma, G., & Durán, N. (2007). Influence of organic amendment on the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, 37, 233–271.

    Article  Google Scholar 

  • Cabrera, A., Cox, L., Velarde, P., Koskinen, W. C., & Cornejo, J. (2007). Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste. Journal of Agricultural and Food Chemistry, 55, 4828–4834.

    Article  CAS  Google Scholar 

  • Cabrera, A., Cox, L., Koskinen, W. C., & Sadowsky, M. J. (2008). Availability of triazine herbicides in aged soils amended with olive oil mill waste. Journal of Agricultural and Food Chemistry, 56, 4112–4119.

    Article  CAS  Google Scholar 

  • Castillo, M. P., Torstensson, L., & Stenström, J. (2008). Biobeds for environmental protection from pesticide use—a review. Journal of Agricultural and Food Chemistry, 56, 6206–6219.

    Article  CAS  Google Scholar 

  • Commission Implementing Regulation 820/2011. Commission Implementing Regulation (EU) No 820/2011 of 16 August 2011 approving the active substance terbuthylazine, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No. 540/2011 and Commission Decision 2008/934/EC. Available on line at http://eur-lex.europa.eu/en/index.htm. Accessed January 2012.

  • Daly, D., Dassargues, A., Drew, D., & Dunne, S. (2002). Main concepts of the ‘European approach’ to karst-groundwater-vulnerability assessment and mapping. Hydrogeology Journal, 10, 340–345.

    Article  Google Scholar 

  • de Souza, M. L., Newcombe, D., Alvey, S., Crowley, D. E., Hay, A., Sadowsky, M. J., et al. (1998). Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. Applied and Environmental Microbiology, 64, 178–184.

    Google Scholar 

  • De Wilde, T., Spanoghe, P., Debaer, C., Ryckeboer, J., Springael, D., & Jaeken, P. (2007). Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Management Science, 63, 111–128.

    Article  Google Scholar 

  • Delgado-Moreno, L., & Peña, A. (2007). Organic amendments from olive cake as a strategy to modify the degradation of sulfonylurea herbicides in soil. Journal of Agricultural and Food Chemistry, 55, 6213–6218.

    Article  CAS  Google Scholar 

  • Delgado-Moreno, L., & Peña, A. (2009). Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil. The Science of the Total Environment, 407, 1489–1495.

    Article  CAS  Google Scholar 

  • Di Corcia, A., Barra Caracciolo, A., Crescenzi, C., Giuliano, G., Murtas, S., & Samperi, R. (1999). Subcritical water extraction followed by liquid chromatography mass spectrometry for determining terbuthylazine and its metabolites in aged and incubated soils. Environmental Science & Technology, 33, 3271–3277.

    Article  Google Scholar 

  • Dolaptsoglou, C., Karpouzas, D., Menkissoglu-Spiroudi, U., Eleftherohorinos, I., & Voudrias, E. A. (2007). Influence of different organic amendments on the degradation, metabolism and adsorption of terbuthylazine. Journal of Environmental Quality, 36, 1793–1802.

    Article  CAS  Google Scholar 

  • EFSA, European Food Safety Authority. (2011). Conclusion on the peer review of the pesticide risk assessment of the active substance terbuthylazine. EFSA Journal, 9(1969), 1–133.

    Google Scholar 

  • Fait, G., Balderacchi, M., Ferrari, F., Ungaro, F., Capri, E., & Trevisan, M. (2010). A field study of the impact of different irrigation practices on herbicide leaching. European Journal of Agronomy, 32, 280–287.

    Article  CAS  Google Scholar 

  • Flury, M. (1996). Experimental evidence of transport of pesticides trough field soils: a review. Journal of Environmental Quality, 22, 25–45.

    Article  Google Scholar 

  • FOOTPRINT (2011). The FOOTPRINT pesticide properties database. Database Collated by the University of Hertfordshire as Part of the EU-funded FOOTPRINT Project (FP6-SSP-022704). Available on line at http://sitem.herts.ac.uk/aeru/footprint/en/index.html. Accessed July 2012.

  • Giovagnotti, C., & Calandra, R. (1994). Valutazione del territorio ai fini della sua attitudine allo spandimento dei liquami zootecnici 2: I suoli di Petrignano d'Assisi e le loro caratteristiche chimico-fisico-idrologiche (Umbria). Annali Facoltà di Agraria Università di Perugia, 48, 129–163.

    CAS  Google Scholar 

  • Gevao, B., Semple, K. T., & Jones, K. C. (2000). Bound pesticide residues in soils: a review. Environmental Pollution, 108, 3–14.

    Article  CAS  Google Scholar 

  • Grenni, P., Barra Caracciolo, A., Rodríguez-Cruz, M. S., & Sánchez-Martín, M. J. (2009a). Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Applied Soil Ecology, 41, 2–7.

    Article  Google Scholar 

  • Grenni, P., Gibello, A., Barra Caracciolo, A., Fajardo, C., Nande, M., Vargas, R., et al. (2009b). A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Research, 43, 2999–3008.

    Article  CAS  Google Scholar 

  • Guzzella, L., Rullo, S., Pozzoni, F., & Giuliano, G. (2003). Studies on mobility and degradation pathways of terbuthylazine using lysimeters on a field scale. Journal of Environmental Quality, 32, 1089–1098.

    Article  CAS  Google Scholar 

  • Guzzella, L., Pozzoni, F., & Giuliano, G. (2006). Herbicide contamination of surficial groundwater in Northern Italy. Environmental Pollution, 142, 344–353.

    Article  CAS  Google Scholar 

  • Hildebrandt, A., Guillamón, M., Lacorte, S., Tauler, R., & Barceló, D. (2008). Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research, 42, 3315–3326.

    Article  CAS  Google Scholar 

  • Kan, M., Beulke, S., & Brown, C. D. (2007). Factors influencing degradation of pesticides in soil. Journal of Agricultural and Food Chemistry, 55, 4487–4492.

    Article  Google Scholar 

  • Kodešová, R., Kočárek, M., Kodeš, V., Drábek, O., Kozák, J., & Hejtmánkovác, K. (2011). Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186, 540–550.

    Article  Google Scholar 

  • Kördel, W., Egli, H., & Klein, M. (2008). Transport of pesticides via macropores (IUPAC Technical Report). Pure and Applied Chemistry, 80, 105–160.

    Article  Google Scholar 

  • Kravvariti, K., Tsiropoulosa, N. G., & Karpouzas, D. G. (2010). Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Management Science, 66, 1122–1128.

    Article  CAS  Google Scholar 

  • López-Piñeiro, A., Cabrera, D., Albarrán, Á., & Peña, D. (2011). Influence of two-phase olive mill waste application to soil on terbuthylazine behaviour and persistence under controlled and field conditions. Journal of Soils and Sediments, 11, 771–782.

    Article  Google Scholar 

  • Lynch, M. R. (1995). Procedures for assessing the environmental fate and ecotoxicity of pesticides. Brussels: Society of Environmental Toxicology and Chemistry (SETAC).

    Google Scholar 

  • Mladinic, M., Zeljezic, D., Shaposhnikov, S. A., & Collins, A. R. (2012). The use of FISH-comet to detect c-Myc and TP 53 damage in extended-term lymphocyte cultures treated with terbuthylazine and carbofuran. Toxicological Letters, 211, 62–69.

    Article  CAS  Google Scholar 

  • Moorman, T. B., Cowan, J. K., Arthur, E. L., & Coats, J. R. (2001). Organic amendments to enhance herbicide biodegradation in contaminated soils. Biology and Fertility of Soils, 33, 541–545.

    Article  CAS  Google Scholar 

  • Navarro, S., Vela, N., García, C., & Navarro, G. (2003). Persistence of simazine and terbuthylazine in a semiarid soil after organic amendment with urban sewage sludge. Journal of Agricultural and Food Chemistry, 51, 7359–7365.

    Article  CAS  Google Scholar 

  • Rhine, E. D., Fuhrmann, J. J., & Radosevich, M. (2003). Microbial community responses to atrazine exposure and nutrient availability: linking degradation capacity to community structure. Microbial Ecology, 46, 145–160.

    Article  CAS  Google Scholar 

  • Rodríguez-Cruz, S., Sánchez-Martín, M. J., Andrades, M. S., & Sánchez-Camazano, M. (2007a). Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils. Journal of Hazardous Materials, 139, 363–372.

    Article  Google Scholar 

  • Rodríguez-Cruz, S., Andrades, M. S., Sánchez-Camazano, M., & Sánchez-Martín, M. J. (2007b). Relationship between the adsorption capacity of pesticides by wood residues and the properties of woods and pesticides. Environmental Science & Technology, 41, 3613–3619.

    Article  Google Scholar 

  • Sánchez, M., Garbi, C., Martinez-Alvarez, R., Ortiz, L. T., Allende, J. L., & Martín, M. (2005). Klebsiella planticola strain DSZ mineralizes simazine: physiological adaptations involved in the process. Applied Microbiology and Biotechnology, 66, 589–596.

    Article  Google Scholar 

  • Santiago-Mora, R., Martin-Laurent, F., de Prado, R., & Franco, A. R. (2005). Degradation of simazine by microorganisms isolated from soils of Spanish olive fields. Pest Management Science, 61, 917–921.

    Article  CAS  Google Scholar 

  • Sayara, T., Sarrà, M., & Sánchez, A. (2010). Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation, 21, 345–356.

    Article  Google Scholar 

  • Strong, L. C., Rosendahl, C., Johnson, G., Sadowsky, M. J., & Wackett, L. P. (2002). Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Applied and Environmental Microbiology, 68, 5973–5980.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver (Ed.), Methods of soil analysis. Part 2: Microbiological and biochemical properties (pp. 903–947). Madison: Soil Science Society of America.

    Google Scholar 

  • Tomlin, C. D. S. (2003). The pesticide manual. Cambridge: British Crop Protection Council.

    Google Scholar 

  • Vischetti, C., Corti, G., Monaci, E., Cocco, S., Coppola, L., & Agnelli, A. (2010). Pesticide adsorption and degradation in fine earth and rock fragments of two soils of different origin. Geoderma, 154, 348–352.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the CSIC/CNR Bilateral Agreement ‘Adsorption and degradation of pesticides in soils modified with low cost biomaterials: Study of the microbial communities responsible for the biodegradation’ (project reference 2006IT0022). We particularly thank Francesca Falconi for her technical assistance in the microbiological and DOC analysis. Moreover, we thank Andrea Del Bon for his valuable advices for the discussion regarding the soil clay texture and mineralogy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Barra Caracciolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grenni, P., Rodríguez-Cruz, M.S., Herrero-Hernández, E. et al. Effects of Wood Amendments on the Degradation of Terbuthylazine and on Soil Microbial Community Activity in a Clay Loam Soil. Water Air Soil Pollut 223, 5401–5412 (2012). https://doi.org/10.1007/s11270-012-1289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1289-z

Keywords

Navigation