Skip to main content
Log in

Immobilization of Zn and Pb in Polluted Soil by In Situ Crystallization Zeolites from Fly Ash

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the last few years, a great deal of research on soil has been carried out in order to develop a low-cost remediation method for reducing the environmental risks due to the pollution caused by heavy metals. In the light of this, the zeolitization achieved in soils mixed with coal fly ash could be a useful answer to reduce the amount and the mobility of metals in polluted areas. In this study, a selected soil treated with coal fly ash and artificially contaminated with Zn or Pb was used to synthesize zeolite at low temperature in laboratory and on a bench-scale experiments. Mineralogical data showed that the synthesis of zeolite X took place readily after the first month, and the amount of the newly formed mineral increased during the entire 1-year-long incubation period. The presence of toxic elements does not interfere with zeolite crystallization, whereas the chemical analysis indicated that a reduction in heavy metal availability takes place in the samples characterized by the presence of zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez, J. M., Lopez-Valdivia, L. M., Novillo, J., Obrador, A., & Rico, M. I. (2006). Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma, 132, 450–463.

    Article  CAS  Google Scholar 

  • Baccouce, A., Srasra, E., & Maaoui, M.-E. (1998). Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite–smectite. Applied Clay Science, 13, 255–273.

    Article  Google Scholar 

  • Belviso, C., Cavalcante, C., & Fiore, S. (2010a). Synthesis of zeolite from Italian coal fly ash: differences in crystallization temperature using seawater instead of distilled water. Waste Management, 30, 839–847.

    Article  CAS  Google Scholar 

  • Belviso, C., Cavalcante, C., Ragone, P., & Fiore, S. (2010b). Immobilization of Ni by synthesising zeolite at low temperatures in a polluted soil. Chemosphere, 78, 1172–1176.

    Article  CAS  Google Scholar 

  • Berkgaut, V., & Singer, A. (1996). High capacity cation exchanger by hydrothermal zeolitization of coal fly ash. Applied Clay Science, 10, 369–378.

    Article  CAS  Google Scholar 

  • Campanella, L., D’Orazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309, 387–393.

    Article  CAS  Google Scholar 

  • Cavalcante, F., Fiore, S., Lettino, A., Piccarreta, G., & Tateo, F. (2007). Illite-smectitemixed layers in sicilide shales and piggy-back deposits of the Gorgoglione Formation (Southern Apeninnes): geological inferences. Bollettino della Società Geologica Italiana, 126, 241–254.

    Google Scholar 

  • Chang, H. L., & Shih, W. H. (1998). A general method for the conversion of fly ash into zeolites as ion exchangers for cesium. Industrial & Engineering Chemistry Research, 37, 71–78.

    Article  CAS  Google Scholar 

  • Chung, F. H. (1974a). Quantitative interpretation of X-ray diffraction patterns. I. Matrix-flushing method of quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519–525.

    Article  Google Scholar 

  • Chung, F. H. (1974b). Quantitative interpretation of X-ray diffraction patterns. II. Adiabatic principle of X-ray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 26–531.

    Google Scholar 

  • Chung, F. H. (1975). Quantitative interpretation of X-ray diffraction patterns. III. Simultaneous determination of a set reference intensities. Journal of Applied Crystallography, 8, 17–19.

    Article  Google Scholar 

  • Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70, 377–394.

    Article  Google Scholar 

  • Endres, J.C.T., Ferret, L.S., Fernandes, I.D., & Hofmeister, L.C. (2001). The removal of Fe, Zn, Cu, and Pb from wastewaters using chabazite zeolites produced from Southern Brazilian coal ashes. International Ash Utilization Symposium 1–7.

  • Ford, R., Scheinost, A. C., Scheckel, K., & Sparks, D. L. (1999). The link between clay mineral weathering and the stabilization of Ni surface precipitates. Environmental Science and Technology, 33, 3140–3144.

    Article  CAS  Google Scholar 

  • Gualtieri, A. F. (2001). Synthesis of sodium zeolites from a natural halloysite. Physics and Chemistry of Minerals, 28, 719–728.

    Article  CAS  Google Scholar 

  • Juan, R., Hernández, S., Andrés, J. M., & Ruiz, C. (2007). Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash. Fuel, 86, 1811–1821.

    Article  CAS  Google Scholar 

  • Lee, M. G., Cheon, J. K., & Kam, S. K. (2003). Heavy metal adsorption characteristics of zeolite synthesized from fly ash. Journal of Industrial and Engineering Chemistry, 9, 174–180.

    CAS  Google Scholar 

  • Leoni, L., & Saitta, M. (1976). X-Ray fluorescence Analysis of 29 trace elements in rock and mineral standards. Rendiconti Società Italiana Mineralogia e Petrografia, 32, 497–500.

    CAS  Google Scholar 

  • Li, X., Coles, B.J., Ramsey, M.H., & Thornton, I. (1995). Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology, 124, 109-123.

    Article  CAS  Google Scholar 

  • Lin, C.F., Lo, S.S., Lin, H.Y., & Lee, Y. (1998). Stabilization of cadmium contaminated soils using synthesized zeolite. Journal of Hazardous Materials, 60, 217-226.

    Article  CAS  Google Scholar 

  • Moreno, N., Querol, X., Alastuey, A., Garcia-Sanchez, A., Soler, L.A., Ayora, C. (2001a). Immobilization of heavy metals in polluted soils by the addition of zeolitic materials synthesized from coal fly ash, International Ash Utilization Symposium, Centre for Applied Energy Research of Kentucky.

  • Moreno, N., Querol, X., Ayora, C., Alastuey, A., Fernandez-Pereira, C., & Janssen-Jurkovicova, M. (2001b). Potential environmental applications of pure zeolitic material synthesized from fly ash. Journal of Environmental Enginering, 127, 994–1002.

    Article  CAS  Google Scholar 

  • Murat, M., Amokrane, A., Bastide, J. P., & Montanaro, L. (1992). Synthesis of zeolites from thermally activated kaolinite. Some observations on nucleation and growth. Clay Minerals, 27, 119–130.

    Article  CAS  Google Scholar 

  • Nardin, G.,Randaccio, L. & Zangrando E. (1995). Lead clustering in a zeolite X. Zeolites, 15, 684-688.

    Article  CAS  Google Scholar 

  • Nascimento, M., Moreira Soares, P. S., & de Souza, V. P. (2009). Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel, 88, 1714–1719.

    Article  CAS  Google Scholar 

  • Qiu, W., & Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145, 483–488.

    Article  CAS  Google Scholar 

  • Querol, X., Umaña, J. C., Plana, F., Alastuey, A., Lopez-Soler, A., Medinacelli, A., et al. (2001). Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel, 80, 857–865.

    Article  CAS  Google Scholar 

  • Querol, X., Moreno, N., Umaña Alastuey, J. C. A., Hernandez, E., Lopez-Soler, A., & Plana, F. (2002). Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 50, 413–423.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Moreno, N., Alvarez-Ayuo, E., García-Sánchez, A., Cama, J., et al. (2006). Immobilization of heavy metals in polluted soils by the addition of zeolitic materials synthesized from coal fly ash. Chemosphere, 62, 171–180.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph., Lachica, M., Barahona, E., Raurent, G., Ure A., Gomez A. et al. (1996). Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. The Science of the Total Environment, 178, 127-132.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Raurent, G., Lopez-Sanchez, J. F., Rubio, R., Ure, A., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Science of Total Environment, 205, 223–234.

    Article  CAS  Google Scholar 

  • Rayalu, S. S., Bansiwal, A. K., Labhsetwar, N., & Devotta, S. (2006). Fly ash based zeolite analogues: versatile materials for energy and environmental conservation. Catalysis Surveys from Asia, 10, 74–88.

    Article  CAS  Google Scholar 

  • Ruiz, R., Blanco, C., Pesquera, C., Gonzalez, F., & Benito, I. (1997). Zeolitization of a bentonite and its application to the removal of ammonium ion from waste water. Applied Clay Science, 12, 73–83.

    Article  CAS  Google Scholar 

  • Scott, J., Guang, D., Naeramitmarnsuk, K., Thabuot, M., & Amal, R. (2001). Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution. Journal of Chemical Technology and Biotecnology, 77, 63–69.

    Article  Google Scholar 

  • Shibata, W., & Seff, K. (1997). Pb2+ exchange isotherns for zeolite Na-X at pH 5,6, and 7. Zeolites, 19, 87-89.

    Article  CAS  Google Scholar 

  • Shigemoto, N., Hayashi, H., & Miyaura, K. (1993). Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. Journal of Material Science, 28, 4781–4786.

    Article  CAS  Google Scholar 

  • Shih, W. H., & Chang, H. L. (1996). Conversation of fly ash into zeolites for ion-exchange applications. Material Letters, 28, 263–268.

    Article  CAS  Google Scholar 

  • Snyder, R.L., & Bish, D.L. (1989). Quantitative analysis, in: Ribbe, P. H., & Post, J. E. (Eds). Modern powder diffraction (pp. 101–144). Washington: Mineralogical Society of America.

  • Terzano, R., Spagnuolo, M., Medici, L., Tateo, F., & Ruggiero, P. (2005a). Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation. Applied Clay Science, 29, 99–110.

    Article  CAS  Google Scholar 

  • Terzano, R., Spagnuolo, M., Medici, L., Vekemans, B., Vincze, L., Janssens, K., et al. (2005b). Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash. Environmental Science & Technology, 39, 6280–6287.

    Article  CAS  Google Scholar 

  • Terzano, R., Spagnuolo, M., Medici, L., Tateo, F., Vekemans, B., Janssens, K., et al. (2006). Spectroscopic investigation on the chemical forms of Cu during the synthesis of zeolite X al low temperature. Applied Geochemistry, 21, 993–1005.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of partuculate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of improvement and harmonisation of extraction techiniques undertaken under the auspices of the BCR of the CEC. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • Wang, C., Li, J., Sun, X., Wang, S., & Sun, X. (2009). Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. Journal of Environmental Sciences, 21, 127–136.

    Article  Google Scholar 

  • Woolard, C. D., Petrus, K., & Van der Horst, M. (2000). The use of a modified fly ash as an adsorbent for lead. Water SA, 26, 531–536.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Belviso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belviso, C., Cavalcante, F., Ragone, P. et al. Immobilization of Zn and Pb in Polluted Soil by In Situ Crystallization Zeolites from Fly Ash. Water Air Soil Pollut 223, 5357–5364 (2012). https://doi.org/10.1007/s11270-012-1285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1285-3

Keywords

Navigation