Skip to main content

Advertisement

Log in

Biological Parameters Towards Polycyclic Aromatic Hydrocarbons Pollution: A Study with Dicentrarchus labrax L. Exposed to the Model Compound Benzo(a)pyrene

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of the present study was to investigate the short-term effects of benzo(a)pyrene (BaP) on juvenile sea bass (Dicentrarchus labrax L.) using a multiparameter approach. At the end of the 96 h of exposure to a range of BaP concentrations (2–256 μg l−1) in laboratorial conditions, a suite of biomarkers involved in biotransformation pathways, oxidative stress and damage, neurotransmission and energetic metabolism were analysed. Levels of BaP metabolites in bile and BaP-type compounds in tissues were also included as biomarkers of exposure, and the post-exposure swimming velocity was used as a toxicity endpoint at a higher level of biological organisation. In addition, a time-series experiment on the levels of bile BaP metabolites was also performed. Increased levels of BaP metabolites in bile and BaP-type compounds in liver and brain of exposed fish were found, indicating BaP uptake, metabolisation and distribution by different tissues. BaP induced oxidative stress and damage, but no significant effects on the post-exposure swimming velocity, neurotransmission and energetic pathways were found. An increase in the levels of BaP metabolites in bile over time was also observed, reaching a threshold similar at all the concentrations tested. Overall, this integrative multiparameter study reflecting different biological responses of D. labrax was suitable to assess the effects caused by the short-term exposure to BaP and may be useful in the marine environmental risk assessment of polycyclic aromatic hydrocarbons pollution. The observed toxic effects also highlight the relevance of short-term exposure to relatively high concentrations of chemicals, as can occur in the case of punctual heavy chemical releases, such as oil spills in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aas, E., Beyer, J., Goks, et al. (2000). Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: An evaluation of compound specificity, inner filter effect and signal interpretation. Biomarkers, 5, 9–23.

    Article  CAS  Google Scholar 

  • Aas, E., Baussant, T., Balk, L., Liewenborg, B., & Andersen, O. K. (2000). PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat Toxicol., 51, 241–58.

    Article  CAS  Google Scholar 

  • Almeida, J. R., Gravato, C., & Guilhermino, L. (2012). Challenges in assessing the toxic effects of polycyclic aromatic hydrocarbons to marine organisms: a case study on the acute toxicity of pyrene to the European seabass (Dicentrarchus labrax L.). Chemosphere., 86, 926–37.

    Article  CAS  Google Scholar 

  • Almeida, J. R., Oliveira, C., Gravato, C., & Guilhermino, L. (2010). Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology., 19, 1369–1381.

    Article  CAS  Google Scholar 

  • Amiard-Triquet, C. (2009). Behavioural disturbances: The missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Human and Ecological Risk Assessement, 15, 87–110.

    Article  CAS  Google Scholar 

  • Ariese, F., Beyer, G., Jonsson, G., Porte, C., & Krahn, M. M. (2005). Review of analytical methods for determining metabolites of polycyclic aromatic compounds (PACs) in fish bile. ICES Tecniques in Marine Environmental Sciences, 39, 41.

    Google Scholar 

  • Ariese, F., Beyer, J., & Wells, D. (2005). Two fish bile reference materials certified for PAH metabolites. J Environ Monit., 7, 869–76.

    Article  CAS  Google Scholar 

  • Ballesteros, M. L., Wunderlin, D. A., & Bistoni, M. A. (2009). Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicology and Environmental Safety., 72, 199–205.

    Article  CAS  Google Scholar 

  • Banni, M., Bouraoui, Z., Ghedira, J., Clerandeau, C., Guerbej, H., et al. (2009). Acute effects of benzo[a]pyrene on liver phase I and II enzymes, and DNA damage on sea bream Sparus aurata. Fish Physiol Biochem., 35, 293–9.

    Article  CAS  Google Scholar 

  • Barron, M. G., Carls, M. G., Heintz, R., & Rice, S. D. (2004). Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci, 78, 60–7.

    Article  CAS  Google Scholar 

  • Beyer, J., Sandvik, M., Utne Skare, J., Egaas, E., Hylland, K., et al. (1997). Time- and dose-dependent biomarker responses in flounder (Platichthys flesus L.) exposed to benzo[a]pyrene, 2,3,3′,4,4′, 5-hexachlorobiphenyl (PCB-156) and cadmium. Biomarkers., 2, 35–44.

    Article  CAS  Google Scholar 

  • Billiard, S. M., Bols, N. C., & Hodson, P. V. (2004). In vitro and in vivo comparisons of fish-specific CYP1A induction relative potency factors for selected polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf, 59, 292–9.

    Article  CAS  Google Scholar 

  • Bird, R. P., & Draper, A. H. (1984). Comparative studies on different methods of malondyhaldehyde determination. Methods Enzymol., 90, 105–10.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72, 248–54.

    Article  CAS  Google Scholar 

  • Burke, M. D., & Mayer, R. T. (1974). Ethoxyresorufin: direct fluorimetric assay of a microsomal-O-deethylation which is preferentially inducible by 3-methylcholantrene. Drugs Metab Dispos., 2, 583–588.

    CAS  Google Scholar 

  • Carlberg, I., & Mannervik, B. (1985). Glutathione reductase. Methods Enzymol, 113, 484–90.

    Article  CAS  Google Scholar 

  • Cheevaporn, V., Pindang, M., & Helander, H. F. (2010). Polycyclic aromatic hydrocarbon contamination in Nile Tilapia (Oreochromis Niloticus): analysis in liver and bile. Environment Asia, 3, 8–14.

    Google Scholar 

  • Cincinelli, A., Stortini, A. M., Perugini, M., Checchini, L., & Lepri, L. (2001). Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—(Tyrrhenian Sea). Marine Chemistry, 76, 77–98.

    Article  CAS  Google Scholar 

  • Clairborne, A. (1985). Catalase activity. In R. A. Greenwald (Ed.), CRC handbook of methods in oxygen radical research (pp. 283–284). Boca Raton: CRC.

    Google Scholar 

  • Collier, T. K., & Varanasi, U. (1991). Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English sole (Parophrys vetulus) exposed to environmental contaminants. Arch Environ Contam Toxicol, 20, 462–73.

    Article  CAS  Google Scholar 

  • Deb, S. C., Araki, T., & Fukushima, T. (2000). Polycyclic aromatic hydrocarbons in fish organs. Mar Pollut Bull., 40, 882–885.

    Article  CAS  Google Scholar 

  • Dell’Omo, G. (2002). Introduction to behavioural ecotoxicology. In: G. Dell’Omo, (Ed.), Behavioural ecotoxicology (pp. xvi–xxiv). Chichester: Wiley.

  • Diamantino, T. C., Almeida, E., Soares, A. M., & Guilhermino, L. (2001). Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere., 45, 553–60.

    Article  CAS  Google Scholar 

  • Ellis, G., & Goldberg, D. M. (1971). An improved manual and semi-automatic assay for NADP-dependent isocitrate dehydrogenase activity, with a description of some kinetic properties of human liver and serum enzyme. Clin Biochem., 4, 175–85.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol., 7, 88–95.

    Article  CAS  Google Scholar 

  • Escartín, E., & Porte, C. (1999). Assessment of PAH pollution in coastal areas from the NW Mediterranean through the analysis of fish bile. Mar Pollut Bull., 38, 1200–1206.

    Article  Google Scholar 

  • Flohe, L., & Gunzler, W. A. (1984). Assays of glutathione peroxidase. Methods Enzymol, 105, 114–21.

    Article  CAS  Google Scholar 

  • Flohe, L., & Otting, F. (1984). Superoxide dismutase assays. Methods Enzymol, 105, 93–104.

    Article  CAS  Google Scholar 

  • Frasco, M. F., & Guilhermino, L. (2002). Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. Fish Physiol Biochem., 26, 149–156.

    Article  CAS  Google Scholar 

  • Gadagbui, B. K. M., & James, M. O. (2000). Activities of affinity-isolated glutathione S-transferase (GST) from channel catfish whole intestine. Aquatic Toxicology., 49, 27–37.

    Article  CAS  Google Scholar 

  • Gagnon, M. M., & Holdway, D. A. (2000). EROD induction and biliary metabolite excretion following exposure to the water accommodated fraction of crude oil and to chemically dispersed crude oil. Arch Environ Contam Toxicol., 38, 70–7.

    Article  CAS  Google Scholar 

  • Gallagher, E. P., Stapleton, P. L., Slone, D. H., Schlenk, D., & Eaton, D. L. (1996). Channel catfish glutathione S-transferase isoenzyme activity toward (±)-anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9, 10-epoxide. Aquatic Toxicology., 34, 135–150.

    Article  CAS  Google Scholar 

  • Gravato, C., & Guilhermino, L. (2009). Effects of benzo(a)pyrene on seabass (Dicentrarchus labrax L.): biomarkers, growth and behavior. Human Ecol Risk Assess, 15, 121–137.

    Article  CAS  Google Scholar 

  • Gravato, C., & Santos, M. A. (2003a). Dicentrarchus labrax biotransformation and genotoxicity responses after exposure to a secondary treated industrial/urban effluent. Ecotoxicol Environ Saf., 55, 300–6.

    Article  CAS  Google Scholar 

  • Gravato, C., & Santos, M. A. (2003b). Genotoxicity biomarkers’ association with B(a)P biotransformation in Dicentrarchus labrax L. Ecotox Environ Saf., 55, 352–8.

    Article  CAS  Google Scholar 

  • Guilhermino, L., Lopes, M. C., Carvalho, A. P., & Soares, A. (1996). Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere., 32, 727–738.

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem, 249, 7130–9.

    CAS  Google Scholar 

  • Hanson, N., & Larsson, A. (2008). Fixed wavelength fluorescence to detect PAH metabolites in fish bile: increased statistical power with an alternative dilution method. Environ Monit Assess., 144, 221–8.

    Article  CAS  Google Scholar 

  • Hylland, K. (2006). Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Environ Health A., 69, 109–23.

    Article  CAS  Google Scholar 

  • Insausti, D., Carrasson, M., Maynou, F., Cartes, J. E., & Sole, M. (2009). Biliary fluorescent aromatic compounds (FACs) measured by fixed wavelength fluorescence (FF) in several marine fish species from the NW Mediterranean. Mar Pollut Bull., 58, 1635–42.

    Article  CAS  Google Scholar 

  • Kennedy, C. J., & Farrell, A. P. (2006). Effects of exposure to the water-soluble fraction of crude oil on the swimming performance and the metabolic and ionic recovery post-exercise in Pacific herring (Clupea pallasi). Environmental Toxicology and Chemistry., 25, 2715–24.

    Article  CAS  Google Scholar 

  • Kipka, U., & Di Toro, D. M. (2009). Technical basis for polar and nonpolar narcotic chemicals and polycyclic aromatic hydrocarbon criteria. III. A polyparameter model for target lipid partitioning. Environ Toxicol Chem., 28, 1429–38.

    Article  CAS  Google Scholar 

  • Kot-Wasik, A., Dabrowska, D., & Namiesnik, J. (2004). Photodegradation and biodegradation study of benzo(a)pyrene in different liquid media. Journal of Photochemistry and Photobiology a-Chemistry., 168, 109–115.

    Article  CAS  Google Scholar 

  • Kreitsberg, R., Zemit, I., Freiberg, R., Tambets, M., & Tuvikene, A. (2010). Responses of metabolic pathways to polycyclic aromatic compounds in flounder following oil spill in the Baltic Sea near the Estonian coast. Aquat Toxicol., 99, 473–8.

    Article  CAS  Google Scholar 

  • Law, R., Hanke, G., Angelidis, M., Batty, J., Bignert, A., et al., 2010. Marine strategy framework directive. Task Group 8 Report. Contaminants and pollution effects. JRC Scientific and Technical Reports.

  • Lemaire, P., Lemaire-Gony, S., Berhaut, J., & Lafaurie, M. (1992). The uptake, metabolism, and biological half-life of benzo[a]pyrene administered by force-feeding in sea bass (Dicentrarchus labrax). Ecotoxicol Environ Saf., 23, 244–51.

    Article  CAS  Google Scholar 

  • Lemaire, P., Mathieu, A., Carriere, S., Narbonne, J. F., Lafaurie, M., et al. (1992). Hepatic biotransformation enzymes in aquaculture European sea bass (Dicentrarchus labrax): Kinetic parameters and induction with benzo(a)pyrene. Comparative Biochemistry and Physiology—B Biochemistry and Molecular Biology, 103, 847–853.

    Google Scholar 

  • Lima, I., Moreira, S. M., Osten, J. R., Soares, A. M., & Guilhermino, L. (2007). Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere., 66, 1230–42.

    Article  CAS  Google Scholar 

  • Limon-Pacheco, J., & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res., 674, 137–47.

    Article  CAS  Google Scholar 

  • Lin, E. L., Cormier, S. M., & Torsella, J. A. (1996). Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: Comparison with HPLC-fluorescent detection. Ecotox Environ Saf., 35, 16–23.

    Article  CAS  Google Scholar 

  • Livingstone, D. R. (2001). Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull., 42, 656–66.

    Article  CAS  Google Scholar 

  • Malik, A., Verma, P., Singh, A. K., & Singh, K. P. (2011). Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River. India. Environmental Monitoring and Assessment., 172, 529–545.

    Article  CAS  Google Scholar 

  • Martínez-Gómez, C., Vethaak, A. D., Hylland, K., Burgeot, T., Köhler, A., et al. (2010). A guide to toxicity assessment and monitoring effects at lower levels of biological organization following marine oil spills in European waters. Ices Journal of Marine Science., 67, 1105–1118.

    Article  Google Scholar 

  • Maskaoui, K., Zhou, J. L., Hong, H. S., & Zhang, Z. L. (2002). Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea. China. Environmental Pollution., 118, 109–122.

    Article  CAS  Google Scholar 

  • Miller, K. P., & Ramos, K. S. (2001). Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev., 33, 1–35.

    Article  CAS  Google Scholar 

  • Nunes, B., Carvalho, F., & Guilhermino, L. (2004). Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki. Chemosphere., 57, 1581–1589.

    Article  CAS  Google Scholar 

  • OECD, 1992. OECD guideline for the testing of chemicals. Test 203: Fish, acute toxicity test., 9 pp.

  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem., 95, 351–8.

    Article  CAS  Google Scholar 

  • Oliveira, M., Gravato, C., & Guilhermino, L. (2012). Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae): Mortality, biomarkers and swimming performance. Ecol Indic., 19, 206–214.

    Article  CAS  Google Scholar 

  • OSPAR. (2003). JAMP guidelines for contaminant-specific biological effects monitoring (p. 38). London: Oslo and Paris Comissions.

    Google Scholar 

  • Paine, R. T., Ruesink, J. L., Sun, A., Soulanille, E. L., Wonham, M. J., et al. (1996). Trouble on oiled waters: Lessons from the Exxon Valdez oil spill. Annual Review of Ecology and Systematics., 27, 197–235.

    Article  Google Scholar 

  • Pickett, G. D., & Pawson, M. G. (1994). Sea bass: Biology, exploitation and conservation. Lowestoft, UK: Chapman & Hall.

    Google Scholar 

  • Sandahl, J. F., Baldwin, D. H., Jenkins, J. J., & Scholz, N. L. (2005). Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Environ Toxicol Chem., 24, 136–45.

    Article  CAS  Google Scholar 

  • Scott, G. R., & Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquat Toxicol., 68, 369–92.

    Article  CAS  Google Scholar 

  • Shimada, T. (2006). Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet., 21, 257–76.

    Article  CAS  Google Scholar 

  • Shimada, T., & Fujii-Kuriyama, Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci., 95, 1–6.

    Article  CAS  Google Scholar 

  • Stagg, R., and McIntosh, A. (1998). Biological effects of contaminants: Determination of CYP1A-dependent mono-oxygenase activity in dab by fluorimetric measurement of EROD activity. In: ICES, (Ed.), Techniques in marine environmental sciences (16 pp).

  • Thain, J., Vethaak, A. D., & Hylland, K. (2008). Contaminants in marine ecosystems: Developing an integrated indicator framework using biological-effect techniques. Ices Journal of Marine Science, 65, 1508–1541.

    Article  Google Scholar 

  • Tierney, K. B. (2011). Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812, 381–389.

    Google Scholar 

  • Timbrell, J. (2009). Principles of biochemical toxicology. Londom: Taylor & Francis.

    Google Scholar 

  • Torres, M. A., Testa, C. P., Gaspari, C., Masutti, M. B., Panitz, C. M., et al. (2002). Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island. Brazil. Mar Pollut Bull., 44, 923–32.

    Article  Google Scholar 

  • Trisciani, A., Corsi, I., Torre, C. D., Perra, G., & Focardi, S. (2011). Hepatic biotransformation genes and enzymes and PAH metabolites in bile of common sole (Solea solea, Linnaeus, 1758) from an oil-contaminated site in the Mediterranean Sea: A field study. Mar Pollut Bull., 62, 806–814.

    Article  CAS  Google Scholar 

  • Tuvikene, A. (1995). Responses of fish to polycyclic aromatic hydrocarbons (PAHs). Ann. Zool. Fennici., 32, 295–309.

    Google Scholar 

  • van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology., 13, 57–149.

    Article  Google Scholar 

  • van Schanke, A., Holtz, F., van der Meer, J. P., Boon, J. P., Ariese, F., et al. (2001). Dose- and time-dependent formation of biliary benzo[a]pyrene metabolites in the marine flatfish dab (Limanda limanda). Environ Toxicol Chem., 20, 1641–7.

    Article  Google Scholar 

  • Varò, I., Navarro, J. C., Amat, F., & Guilhermino, L. (2003). Efect of dichlorvos on cholinesterase activity of the European sea bass (Dicentrarchus labrax). Pestic Biochem Phys, 75, 61–72.

    Article  Google Scholar 

  • Vassault, A. (1983). Lactate Dehydrogenase. In H. O. Bergmeyer (Ed.), Methods of enzymatic analysis. Vol. III. Enzymes: oxireductases transferases (pp. 118–126). New York: Academic.

    Google Scholar 

  • Vieira, L. R., Sousa, A., Frasco, M. F., Lima, I., Morgado, F., et al. (2008). Acute effects of Benzo[a]pyrene, anthracene and a fuel oil on biomarkers of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Sci Total Environ., 395, 87–100.

    Article  CAS  Google Scholar 

  • Wallace, W. G., & Estephan, A. (2004). Differencial susceptibility of horizontal and vertical swimming activity to cadmium exposure in a gammaridean amphipod (Gammarus lawrencianus). Aquatic Toxicology., 69, 289–297.

    Article  CAS  Google Scholar 

  • Weis, J. S., Smith, G., Zhou, T., Santiago-Bass, C., & Weis, P. (2001). Effects of contaminants on behaviour: Biochemical mechanisms and ecological consequences. Bioscience., 51, 209–217.

    Article  Google Scholar 

  • Willett, K. L., Gardinali, P. R., Lienesch, L. A., & Di Giulio, R. T. (2000). Comparative metabolism and excretion of benzo(a)pyrene in 2 species of ictalurid catfish. Toxicol Sci., 58, 68–76.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Zhou, J. L., & Maskaoui, K. (2003). Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay. China. Environmental Pollution., 121, 269–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Portuguese Foundation for the Science and the Technology (FCT) and FEDER European funds through the project “RAMOCS—Implementation of Risk Assessment Methodologies for Oil and Chemical Spills in the European Marine Environment” (ERA-AMPERA/0001/2007), in the scope of the ERA-NET AMPERA (ERAC-CT2005-016165, 6th EU Framework Program). Joana R. Almeida received a PhD grant (SFRH/BD/40843/2007) from FCT with European social funds and national funds of MCTES (POPH-QREN-Tipology 4.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana R. Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, J.R., Gravato, C. & Guilhermino, L. Biological Parameters Towards Polycyclic Aromatic Hydrocarbons Pollution: A Study with Dicentrarchus labrax L. Exposed to the Model Compound Benzo(a)pyrene. Water Air Soil Pollut 223, 4709–4722 (2012). https://doi.org/10.1007/s11270-012-1227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1227-0

Keywords

Navigation