Skip to main content

Advertisement

Log in

Mineralisation of Weathered Crude Oil by a Hydrocarbonoclastic Consortia in Marine Mesocosms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Marine waters are most vulnerable to crude oil pollution due to increased sea-based oil-related activities. Successful remediation of such polluted environments is normally carried out in a laboratory with suitable physical and environmental alterations. However, it is challenging to alter the physical and environmental conditions in crude oil-contaminated natural environments. In a previous study, six hydrocarbonoclastic bacteria were isolated from an oil-contaminated site. Here we report on their ability to mineralise weathered crude oil as a carbon source in seawater mesocosms, in order to construct a hydrocarbonoclastic consortia for the effective mineralisation of hydrocarbons present in the weathered crude oil at seawater-based environment. This was completed without altering the physical and environmental parameters (salinity, pH and temperature) and followed by the detection of microbial community changes. The total amount of oil mineralised by these six isolates individually over 28-day incubation ranged from 4.7 to 10 %. The bacterial consortia composed of these six strains showed a greater mineralisation rate (18.5 %). Temperature gradient gel electrophoresis revealed that the functionally dominant species were present after the first week (week 2 to week 4) following the addition of the consortia, which were represented in dendrogram by cluster 2 and also these weeks representing a distinct point on the Pareto–Lorenz curve; no community could be identified in controls in which no consortia were added. This shows that the addition of consortia potentially dealt with changing environmental conditions and preserved its functionality followed by effective mineralisation of weathered crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez, P. J. J., & Illman, W. A. (2006). Bioremediation and natural attenuation. New Jersey: Wiley.

    Google Scholar 

  • Aspray, T. J., Carvalho, D. J. C., & Philip, J. C. (2007). Application of soil slurry respirometry to optimise and subsequently monitor ex situ bioremediation of hydrocarbon-contaminated soils. International Biodeterioration and Biodegradation, 60, 279–284.

    Article  CAS  Google Scholar 

  • Aspray, T., Gluszek, A., & Carvalho, D. (2008). Effect of nitrogen amendment on respiration and respiratory Quotient (RQ) in three hydrocarbon contaminated soils of different type. Chemosphere, 72, 947–951.

    Article  CAS  Google Scholar 

  • Atlas, R. M., & Philip, J. (2005). Applied microbial solutions for real-world environmental cleanup. Washington: ASM.

    Google Scholar 

  • Betti, M., Boisson, F., Eriksson, M., Tolosa, I., & Vasileva, E. (2011). Isotope analysis for marine environmental studies. International Journal of Mass Spectrometry, 307, 192–199.

    Article  CAS  Google Scholar 

  • Bordoloi, N. K., & Konwar, B. K. (2008). Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids and Surfaces, 63, 73–82.

    Article  CAS  Google Scholar 

  • Bushnell, L. D., & Haas, H. F. (1941). The utilization of certain hydrocarbons by microorganisms. Department of Bacteriology, 199, 653–673.

    Google Scholar 

  • Cappello, S., Denaro, R., Genovese, M., Giuliano, L., & Yakimov, M. M. (2007). Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbial Research, 162, 185–190.

    Article  CAS  Google Scholar 

  • Chang, W., Whyte, L., & Ghoshal, S. (2011). Comparison of the effects of variable site temperatures and constant incubation temperatures on the biodegradation of petroleum hydrocarbons in pilot-scale experiments with field-aged contaminated soils from a cold regions site. Chemosphere, 82, 872–878.

    Article  CAS  Google Scholar 

  • Diplock, E. E., Mardlin, D. P., Killham, K. S., & Paton, G. I. (2009). Predicting bioremediation of hydrocarbons: laboratory to field scale. Environmental Pollution, 157, 1831–1840.

    Article  CAS  Google Scholar 

  • Falk, M. W., Song, K., Matiasek, M. G., & Wuert, S. (2009). Microbial community dynamics in replicate membrane bioreactors—natural reproducible fluctuations. Water Research, 43, 842–852.

    Article  CAS  Google Scholar 

  • Fantroussi, E. S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation. Current Opinion in Microbiology, 8, 268–275.

    Article  Google Scholar 

  • Ferguson, S. H., Franzmann, P. D., Revill, A. T., Snape, I., & Rayner, J. L. (2003). The effects of nitrogen and water on mineralisation of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Regions Science and Technology, 37, 197–212.

    Article  Google Scholar 

  • Fingerman, M., & Nagabhushanam, R. (2005). Bioremediation of aquatic and terrestrial ecosystems. New Hampshire: Science.

    Google Scholar 

  • Fiuza, A. M. A., & Vila, M. C. C. (2005). An insight into soil bioremediation through respirometry. Environment International, 31, 179–183.

    Article  CAS  Google Scholar 

  • Frutos, F. J. G., Escolano, O., Garcia, S., Babin, M., & Fernandez, M. D. (2010). Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. Journal of Hazardous Materials, 183, 806–813.

    Article  CAS  Google Scholar 

  • Gejlsbjerg, B., Madsen, T., & Andersen, T. T. (2003). Comparison of biodegradation of surfactants in soils and sludge–soil mixtures by use of 14C-labelled compounds and automated respirometry. Chemosphere, 50, 321–331.

    Article  Google Scholar 

  • Girvan, M. S., Bullimore, J., Pretty, J. N., Osborn, A. M., & Ball, A. S. (2003). Soil type is the primary determinant of the composition of the total and active bacterial communities in Arable soils. Applied and Environmental Microbiology, 69, 1800–1809.

    Article  CAS  Google Scholar 

  • Kadali, K. K., Simons, K. L., Skuza, P. P., Moore, R. B., & Ball, A. S. (2012). A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. Journal of Microbiological Methods, 2012, 348–355.

    Article  Google Scholar 

  • Lal, B., & Khanna, S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. The Journal of Applied Bacteriology, 81, 355–362.

    CAS  Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.

    CAS  Google Scholar 

  • Lloyd-jones, G., Laurie, A. D., Hunter, D. W. F., & Fraser, R. (1999). Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiology Ecology, 29, 69–79.

    Article  CAS  Google Scholar 

  • Lovely, D. R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nature Reviews Microbiology, 1, 35–44.

    Article  Google Scholar 

  • Margesin, R., Labbe, D., Schinner, F., Greer, C. W., & Whyte, L. G. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Applied and Environmental Microbiology, 69, 3089–3092.

    Article  Google Scholar 

  • Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., & Verstraete, W. (2008). How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology, 10, 1571–1581.

    Article  CAS  Google Scholar 

  • Mckew, B. A., Coulon, F., Osborn, A. M., Timmis, K. N., & McGenity, T. J. (2007). Determining the identity and roles of oil-metabolizing marine bacteria from the Thames Estuary, UK. Environmental Microbiology, 9(1), 165–176.

    Article  CAS  Google Scholar 

  • Miles, R. A., & Doucette, W. J. (2001). Assessing the aerobic biodegradability of 14 hydrocarbons in two soils using a simple microcosm/respiration method. Chemosphere, 45, 1085–1090.

    Article  CAS  Google Scholar 

  • Minai-Tehrani, D., Minoui, S., & Herfatmanesh, A. (2008). Effect of salinity on biodegradation of polycyclic aromatic hydrocarbons (PAHs) of heavy crude oil in soil. Bulletin of Environmental Contamination and Toxicology, 82, 179–184.

    Article  Google Scholar 

  • Muyzer, G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317–322.

    Article  CAS  Google Scholar 

  • Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek, 73, 127–141.

    Article  CAS  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  • Nocker, A., Burr, M., & Camper, A. K. (2007). Genotypic microbial community profiling: a critical technical review. Microbial Ecology, 54, 276–289.

    Article  CAS  Google Scholar 

  • Osborn, A. M., Moore, R. B., & Timmis, K. N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology, 2, 39–50.

    Article  CAS  Google Scholar 

  • Perez-Armendariz, B., Martienez-Carrera, D., Calixto-Mosqueda, Alba, J., & Rodriguez-Vazquez, R. (2010). Filamentous fungi removes weathered hydrocarbons from polluted soil of tropical Mexico. Revista Internacional De Contaminacion Ambiental, 26, 193–199.

    CAS  Google Scholar 

  • Plaza, G., Ulfig, K., Worsztynowicz, A., Malina, G., Krzeminska, B., & Brigmon, R. L. (2005). Respirometry for assessing the biodegradation of petroleum hydrocarbons. Environmental Technology, 26, 161–169.

    Article  CAS  Google Scholar 

  • Prosser, J., Bohannan, B. J. M., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, R. P., et al. (2007). The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 5, 384–392.

    Article  CAS  Google Scholar 

  • Rahman, K. S. M., Banat, I. M., Thahira, J., Thayumanavan, T., & Lakshmanaperumalsamy, P. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology, 81, 25–32.

    Article  CAS  Google Scholar 

  • Rhodes, C. J. (2010). Biofuel from algae: salvation from peak oil. Biomedical and Life Sciences, 15, 229–248.

    Google Scholar 

  • Roling, W. F. M., Milner, M. G., Jones, M., Lee, K., Daniel, F., Swannell, R. J. P., et al. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Applied and Environmental Microbiology, 68, 5537–5548.

    Article  CAS  Google Scholar 

  • Sathishkumar, M., Binupriya, A. R., Baik, S., & Yun, S. (2008). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean, 36, 92–96.

    CAS  Google Scholar 

  • Sheppard, P. J., Adetutu, E. M., Makadia, T. H., & Ball, A. S. (2011). Microbial community and ecotoxicity analysis of bioremediation, weathered hydrocarbon-contaminated soil. Soil Research, 49, 261–269.

    Article  CAS  Google Scholar 

  • Smith, K., Cutright, T., & Qammar, H. (2000). Biokinetic parameter estimation for ISB of PAH-contaminated soil. Journal of Environmental Engineering, 126, 369–374.

    Article  CAS  Google Scholar 

  • Speight, J. G. (2007). The chemistry and technology of petroleum (4th ed.). Washington: CRC.

    Google Scholar 

  • Thompson, I. P., Van der Gast, C. J., Ciric, L., & Singer, A. C. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology, 7, 909–915.

    Article  CAS  Google Scholar 

  • Tyagi, M., Da Fonseca, M. M. R., & De Carvalho, C. C. C. R. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation process. Biodegradation, 22, 231–241.

    Article  CAS  Google Scholar 

  • Widada, J., Nojiri, H., & Omori, T. (2002). Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and catabolic genes in bioremediation. Applied Microbiology and Biotechnology, 60, 45–49.

    Article  CAS  Google Scholar 

  • Wittebolle, L., Vervaeren, H., Verstraete, W., & Boon, N. (2008). Quantifying community dynamics of nitrifiers in functionally stable reactors. Applied and Environmental Microbiology, 74, 286–293.

    Article  CAS  Google Scholar 

  • Wittebolle, L., Verstraete, W., & Boon, N. (2009). The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors. Water Research, 43, 4149–4158.

    Article  CAS  Google Scholar 

  • Yakimov, M. M., Denaro, R., Genovese, M., Capello, S., D’Auria, G., Chernikova, T. N., et al. (2005). Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environmental Microbiology, 7, 1426–1441.

    Article  CAS  Google Scholar 

  • Yamada, M., Takada, H., Toyoda, K., Yoshida, A., Shibata, A., Nomura, H., et al. (2003). Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Marine Pollution Bulletin, 47, 105–113.

    Article  CAS  Google Scholar 

  • Yang, L., Lai, C., & Shieh, W. K. (2000). Biodegradation of dispersed diesel fuel under high salinity conditions. Pergamon, 34, 3303–3314.

    CAS  Google Scholar 

  • Zhang, T., Gannon, S. M., Nevin, K. P., Franks, A. E., & Lovely, D. R. (2010). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environmental Microbiology, 12, 1011–1020.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Australia India Strategic Research Fund (BFO20032) and also by the South Australian Premiers Science Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna K. Kadali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadali, K.K., Simons, K.L., Sheppard, P.J. et al. Mineralisation of Weathered Crude Oil by a Hydrocarbonoclastic Consortia in Marine Mesocosms. Water Air Soil Pollut 223, 4283–4295 (2012). https://doi.org/10.1007/s11270-012-1191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1191-8

Keywords

Navigation