Skip to main content
Log in

Efficiency of Bark, Activated Charcoal, Foam and Sand Filters in Reducing Pollutants from Greywater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Greywater is a potential resource of water that can be improved to meet the quality needed for irrigation. This study evaluated the performance of bark, activated charcoal, polyurethane foam and sand filters in removing biochemical oxygen demand (BOD5), surfactants, phosphorus, nitrogen and microbial indicators from greywater during start-up and steady state. In column experiments, 0.6 m high filters (diameter 20 cm) were fed for 113 days with artificial greywater at a hydraulic loading rate of 0.032 m3 m−2 day−1 and an organic loading rate of 0.014 kg BOD5 m−2 day−1. Bark and activated charcoal efficiently reduced the concentrations of organics (BOD5), surfactants (methylene blue active substances—MBAS), total phosphorus (Tot-P) and total thermotolerant coliform numbers, while sand and foam were less efficient. Bark, activated charcoal, foam and sand reduced influent BOD5 by 98, 97, 37 and 75 %; MBAS by >99, >99, 73 and 96 %; Tot-P by 97, 91, 36 and 78 %; and total nitrogen by 19, 98, 13 and 5 %, respectively. BOD5 and MBAS were efficiently reduced directly from start-up by bark and activated charcoal, while foam needed 30 days to achieve about 50 % reduction in BOD5. Bark was the most efficient filter in reducing thermotolerant faecal coliforms (2.4 log10), while foam achieved the lowest reduction (0.5 log10). Overall, bark and activated charcoal filters appeared to be the most suitable filters for improving greywater quality to reach irrigation quality in terms of organic matter reduction. Performance of these filters under higher and fluctuating loadings and the long-term sustainability of the filter materials need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BOD5 :

Biochemical oxygen demand

COD:

Chemical oxygen demand

CFU:

Colony forming unit

DOC:

Dissolved organic carbon

EC:

Electrical conductivity

MBAS:

Methylene blue active substances

SU:

Standard unit

TOC:

Total organic carbon

Tot-N:

Total nitrogen

Tot-P:

Total phosphorus

TTFC:

Thermotolerant faecal coliforms

References

  • Abu Ghunmi, L., Zeeman, G., Lier, J. V., & Fayyed, F. (2008). Quantitative and qualitative characteristics of grey water for reuse requirements and treatment alternatives: the case of Jordan. Water Science & Technology, 58(7), 1385–1396.

    Article  CAS  Google Scholar 

  • Ahsan, S., Kaneco, S., Ohta, K., Mizuno, T., & Kani, K. (2001). Use of some natural and waste materials for waste water treatment. Water Research, 35(15), 3738–3742.

    Article  CAS  Google Scholar 

  • Al-Jayyousi, O. R. (2002). Focused environmental assessment of greywater reuse in Jordan. Environmental Engineering Policy, 3, 67–73.

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Argun, M. E., Dursun, S., & Karatas, M. (2009). Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination, 249(2), 519–527.

    Article  CAS  Google Scholar 

  • Arias, C. A., Del, B. M., & Brix, H. (2001). Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research, 35(5), 1159–1168.

    Article  CAS  Google Scholar 

  • ASTM. (1998). Manual on test sieving methods: guidelines for establishing sieve analysis procedures. Lawrence R. P., Charles, W. W. (Ed.), West Conshohocken: American Society for Testing and Materials.

  • Ayers, R.S., Westcot, D.W. (1994). Water quality for agriculture. Food and Agriculture Organization of the United Nations Rome, 1985 © FAO. Report nr ISBN 92-5-102263-1.

  • Babel, S., & Kurniawan, T. A. (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, 951–967.

    Article  CAS  Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.

    Article  CAS  Google Scholar 

  • Baldez, E. E., Robaina, N. F., & Cassella, R. J. (2008). Employment of polyurethane foam for the adsorption of methylene blue in aqueous medium. Journal of Hazardous Materials, 159(2–3), 580–586.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. J. (1938). Adsorption of gases in multimolecular layers. American Chemical Society, 60(309A), 309–319.

    Article  CAS  Google Scholar 

  • Cunha-Queda, A. C., Ribeiro, H. M., Ramos, A., & Cabral, F. (2007). Study of biochemical and microbiological parameters during composting of pine and eucalyptus bark. Bioresource technology, 98(17), 3213–3220.

    Article  CAS  Google Scholar 

  • Dalahmeh, S. S., Hylander, L. D., Vinnerås, B., Pell, M., Öborn, I., & Jönsson, H. (2011). Potential of organic filter materials for treating greywater to achieve irrigation quality: a review. Water Science and Technology, 63(9), 1832–1840.

    Article  CAS  Google Scholar 

  • Desmarais, T. R., Solo-Gabriele, H. M., & Palmer, C. J. (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Applied and Environmental Microbiology, 68(3), 1165–1172.

    Article  CAS  Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 13–32). London: Earthscan.

    Google Scholar 

  • Genç-Fuhrman, H., Mikkelsen, P. S., & Ledin, A. (2007). Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents. Water Research, 41(3), 591–602.

    Article  Google Scholar 

  • Gross, A., Azulai, N., Oron, G., Ronen, Z., Arnold, M., & Nejidat, A. (2005). Environmental impacts and health risks associated with greywater irrigation: a case study. Water Science & Technology, 52(8), 161–169.

    CAS  Google Scholar 

  • Guo, W., Ngo, H.-H., Dharmawan, F., & Palmer, C. G. (2010). Roles of polyurethane foam in aerobic moving and fixed bed bioreactors. Bioresource Technology, 101(5), 1435–1439.

    Article  CAS  Google Scholar 

  • Halalsheh, M., Dalahmeh, S., Sayed, M., Suleiman, W., Shareef, M., Mansour, M., & Safi, M. (2008). Grey water characteristics and treatment options for rural areas in Jordan. Bioresource Technology, 99, 6635–6641.

    Article  CAS  Google Scholar 

  • Jacob, H., Dance, G., Clarke, T. (2002). Methods of soil analysis, part 4: physical methods. G. S.Campbell, Horton R., Jury W. A., Nielsen D. R., Es H. Mv, Wieregna P. J., Dane J. H., Topp G. C. (Ed.), Madison: Soil Science Society of America, Inc.

  • Lens, P. N., Vochten, P. M., Speleers, L., & Verstraete, W. H. (1993). Direct treatment of domestic wastewater by percolation over peat, bark and woodchips. Water Research, 28(1), 17–26.

    Article  Google Scholar 

  • Lewis, G. D., Lomax, T. D., & Kimberley, M. (1995). Removal of virus particles, bacteria and bovine serum albumin from water by steam-exploded Pinus radiata bark. Water Research, 29(7), 1689–1693.

    Article  CAS  Google Scholar 

  • Li, Y., Chen, B., & Zhu, L. (2010). Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark. Bioresource Technology, 101(19), 7307–7313.

    Article  CAS  Google Scholar 

  • Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., & Shen, Q. (2011). Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresource technology, 102(19), 9040–9049.

    Article  CAS  Google Scholar 

  • Luo, J., & Lindsey, S. (2006). The use of pine bark and natural zeolite as biofilter media to remove animal rendering process odours. Bioresource Technology, 97(13), 1461–1469.

    Article  CAS  Google Scholar 

  • Marzal, P., Seco, A., Gabaldón, C., & Ferrer, J. (1996). Cadmium and zinc adsorption onto activated carbon: influence of temperature, pH and metal/carbon ratio. Journal of Chemical Technology & Biotechnology, 66(3), 279–285.

    Article  CAS  Google Scholar 

  • Morel, A., & Diener, S. (2006). Greywater management in low and middle-income countries, review of different treatment systems for households or neighbourhoods. Dübendorf: Swiss Federal Institute of Aquatic Science and Technology (Eawag).

    Google Scholar 

  • Mukherjee, S., Kumar, S., Misra, A. K., & Fan, M. (2007). Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chemical Engineering Journal, 129(1–3), 133–142.

    Article  CAS  Google Scholar 

  • MWI. (2007). Annual report (p. 202). Amman: Ministry of Water and Irrigation.

    Google Scholar 

  • Pell, M., & Nyberg, F. (1989). Infiltration of wastewater in a newly started pilot sand-filter system: I. Reduction of organic matter and phosphorus. Journal of Environmental Quality, 18, 451–457.

    Article  CAS  Google Scholar 

  • Purakayastha, P. D., Pal, A., & Bandyopadhyay, M. (2005). Adsorbent selection for anionic surfactant removal from water. Indian Journal of Chemical Technology, 12, 281–284.

    Google Scholar 

  • Randall, J. M., Garrett, V., Bermann, R. L., & Waiss, A. C., Jr. (1974). Use of bark to remove heavy metal ions from waste solutions. Forest Products Journal, 24(9), 80–84.

    CAS  Google Scholar 

  • Ratola, N., Botelho, C., & Alves, A. (2003). The use of pine bark as a natural adsorbent for persistent organic pollutants—study of lindane and heptachlor adsorption. Journal of Chemical Technology & Biotechnology, 78(2–3), 347–351.

    Article  CAS  Google Scholar 

  • Ribé, V., Nehrenheim, E., Odlare, M., & Waara, S. (2009). Leaching of contaminants from untreated pine bark in a batch study: chemical analysis and ecotoxicological evaluation. Journal of Hazardous Materials, 163(2–3), 1096–1100.

    Article  Google Scholar 

  • Rodgers, M., Healy, M. G., & Mulqueen, J. (2005). Organic carbon removal and nitrification of high strength wastewaters using stratified sand filters. Water Research, 39(14), 3279–3286.

    Article  CAS  Google Scholar 

  • Rodrigues, C. C., de Moraes, J. D., da Nóbrega, S. W., & Barboza, M. G. (2007). Ammonia adsorption in a fixed bed of activated carbon. Bioresource Technology, 98(4), 886–891.

    Article  CAS  Google Scholar 

  • Roy, C., Auger, R., & Chenier, R. (1998). Use of non woven textile in intermittent filters. Water Science & Technology, 38(3), 159–166.

    Article  CAS  Google Scholar 

  • Schmid, G., Barczewski, B. (1995). Development and application of a fibre optic fluorimeter for in situ tracer concentration measurements in groundwater and soil. Tracer Technologies for Hydrological Systems((Proceedings of a Boulder Symposium, July 1995). IAHS Publ. no. 229, 1995:13-20.

  • Schwager, A., & Boller, M. (1997). Transport phenomena in intermittent filters. Water Science and Technology, 35(6), 13–20.

    Article  CAS  Google Scholar 

  • Scott C. A, Faruqui, N. I., Raschid-Sally L. 2004. Wastewater use in irrigated agriculture: management challenges in developing countries. In: C. A. Scott, Faruqui, N. I., Raschid-Sally L. (Ed.), Wastewater use in irrigated agriculture: confronting the livelihood and environmental realities. IWMI and IDRC. Wallingford: CABI. p 1-24.

  • Spychala, M., & Ejewski, R. B. (2003). Sand filter clogging by septic tank effluent. Water Science & Technology, 48(11–12), 153–159.

    CAS  Google Scholar 

  • Stevens, D. K., Berthouex, P. M., & Chapman, T. W. (1986). The effect of tracer diffusion in biofilm on residence time distributions. Water Research, 20(3), 369–375.

    Article  CAS  Google Scholar 

  • Suleiman, W., Al-Hayek, B., Assayed, M., Dalahmeh, S. and Al-Hmoud, N. (2010). Greywater management in the northeastern Badia of Jordan. McIlwaine S., Redwood, M. (Ed.), Practical Action Publishing/CSBE/IDRC 2010. 200p.

  • Torrens, A., Molle, P., Boutin, C., & Salgot, M. (2009). Removal of bacterial and viral indicator in vertical flow constructed wetlands and intermittent sand filters. Desalination, 246(1–3), 169–178.

    Article  CAS  Google Scholar 

  • Travis, M. J., Wiel-Shafran, A., Weisbrod, N., Adar, E., & Gross, A. (2010). Greywater reuse for irrigation: effect on soil properties. Science of The Total Environment, 408(12), 2501–2508.

    Article  CAS  Google Scholar 

  • Trois, C., & Polster, A. (2007). Effective pine bark composting with the dome aeration technology. Waste Management, 27(1), 96–105.

    Article  Google Scholar 

  • Vattenlaboratoriet. (2000). Provtagningar på obehandlat avloppsvatten: Bakteriehalter i avloppsvatten. (Sampling untreated sewage water: concentrations of bacteria in sewage water) Uppsala, Uppsala Vatten och Avfall AB.

  • Vinnerås, B., Palmquist, H., Balmer, P., & Jönsson, H. (2006). The characteristics of household wastewater and biodegradable solid waste—a proposal for new Swedish design values. Urban Water, 3(1), 3–11.

    Article  Google Scholar 

  • WHO. (2006). Guidelines for the safe use of wastewater, excreta and greywater (Vol. IV. Excreta and greywater use in agriculture). Geneva: World Health Organization.

    Google Scholar 

  • Wright, A. L., Wang, Y., & Reddy, K. R. (2008). Loss-on-ignition method to assess soil organic carbon in calcareous Everglades wetlands. Communications in Soil Science and Plant Analysis, 39(19), 3074–3083.

    Article  CAS  Google Scholar 

  • Yamahara, K. M., Walters, S. P., & Boehm, A. B. (2009). Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting (vol 75, pg 1517, 2009). Applied and Environmental Microbiology, 75(9), 2997–2997.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Islamic Development Bank, Jeddah, Saudi Arabia, the Swedish International Development Cooperation Agency (Sida), the Swedish Research Council Formas and the Swedish University of Agricultural Sciences (SLU). Special thanks to Sven Smårs, Dick Gustafsson and Carl Westberg at the Department of Energy and Technology for their technical assistance, and Emelie Kjellberg at the National Veterinary Institute for performing the microbial analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar S Dalahmeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalahmeh, S.S., Pell, M., Vinnerås, B. et al. Efficiency of Bark, Activated Charcoal, Foam and Sand Filters in Reducing Pollutants from Greywater. Water Air Soil Pollut 223, 3657–3671 (2012). https://doi.org/10.1007/s11270-012-1139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1139-z

Keywords

Navigation