Skip to main content

Advertisement

Log in

Mineralogy and Weathering of Smelter-Derived Spherical Particles in Soils: Implications for the Mobility of Ni and Cu in the Surficial Environment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Spherical particles have been sampled from soils and silica-rich rock coatings close to major smelter centers at Coppercliff, Coniston, and Falconbridge in the Sudbury area, Canada. Detailed analyses employing optical microscopy, scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and Mössbauer spectroscopy have been conducted to elucidate their nature, origin and potential alteration. The spherical particles are on the nano- to millimeter-size range and are composed principally of magnetite, hematite, Fe-silicates (olivine, pyroxenes), heazlewoodite, bornite, pyrrhotite, spinels (including trevorite and cuprospinel), delafossite, and cuprite or tenorite. The spinels present have variable Cu and Ni contents, whereas delafossite and cuprite are Ni free. Texturally, the spherical particles are composed of a Fe-oxide–Fe-silicate matrix with sulfide inclusions. The matrix displays growth features of a Fe-rich phase that commonly form during rapid cooling and transformation processes within smelter and converter facilities. Examination of weathered spherical particles indicates that some sulfide inclusions have dissolved prior to the alteration of the Fe-silicates and oxides and that the weathering of Fe-silicates occurs simultaneously with the transformation of magnetite into hematite. A higher proportion of Cu vs. Ni in the clay and organic fraction noted in the Sudbury soils is explained by (1) the formation of stronger adsorption complexes between Cu and the corresponding surface species and (2) the preferential release of Cu vs. Ni by smelter-derived particles. The latter mechanism is based on the observations that (a) cuprospinels have higher dissolution rates than Ni spinels, (b) a larger proportion of Cu occurs in the nanometer-size (and thus more soluble) fraction of the emitted particles, and (c) Ni spinels of relatively low solubility form in the alteration zone of heazlewoodite inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamo, P., Dudka, S., Wilson, M. J., & McHardy, W. J. (1996). Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region. Canada. Environ. Pollut., 91, 11–19.

    Article  CAS  Google Scholar 

  • Ahlawat, A., & Sathe, V. G. (2010). Raman study of NiFe2O4 nanoparticles, bulks and films: Effect of laser power. J. Raman Spectroscopy., 42, 1087–1094.

    Article  Google Scholar 

  • Alloway B.J.(1990) Soil processes and the behaviour of metals. In B.J. Alloway (Ed.), Heavy metals in soils. New York: Wiley, 339. p.7-28.

  • Anand, R. R., & Gilkes, R. J. (1984). Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. J. Soil Science., 35, 559–567.

    Article  CAS  Google Scholar 

  • Anastasio, C., & Martin, S. T. (2001). Atmospheric nanoparticles. Reviews in Mineralogy and Geochemistry, 44, 293–349.

    Article  CAS  Google Scholar 

  • Baker D.E. (1990) Copper metals in soils. In B.J. Alloway (Ed.), Heavy metals in soils. New York: Wiley, 339. p.151-176.

  • Bao, H. M., & Reheis, M. C. (2003). Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States. J. Geophysi. Res., 108, 4430–4438.

    Article  Google Scholar 

  • Batonneau, Y., Bremard, C., Gegembre, L., Laureyns, J., LeMaguer, A., LeMaguer, D., Perdrix, E., & Sobanska, S. (2004). Speciation of PM sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environmental Science and Technology, 38, 5281–5289.

    Article  CAS  Google Scholar 

  • Brock, C. A., Hamill, P., Wilson, J. C., Jonsson, H. H., & Chan, K. R. (1995). Particle formation in the upper tropical troposphere—A source of nuclei for the stratospheric aerosol. Science, 270, 1650–1653.

    Article  CAS  Google Scholar 

  • Campbell, J. L., McDonald, A. M., Perrett, G. M., & Taylor, S. M. (2011). A GUPIX-based approach to interpreting the PIXE-plus-XRF spectra from the Mars Exploration rovers: II geochemical reference materials. Nuclear InstrumMethods in Phys. Res. Sec B., 269, 69–81.

    Article  CAS  Google Scholar 

  • Chan W.H., Lusis M.A., Vet R., and Skelton B.G. (1982) Size distribution and emission rate measurements of particulates in the Inco 381 m chimney and iron ore recovery plant stack fumes, 1979–80. Sudbury Environmental Study, Ontario Ministry of Environment. p.101.

  • Cheng, Z., Abernathy, H., & Liu, M. (2007). Raman spectroscopy of nickel sulfide Ni3S2. Phys. Chem. C, 111, 17997–18000.

    Article  CAS  Google Scholar 

  • Connolly, H. C., & Hewins, R. H. (1995). Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment: An experimental investigation. Geochim. Cosmochim., 59, 3231–3246.

    Article  CAS  Google Scholar 

  • Cornell, R. M., Schneider, W., & Giovanoli, R. (1992). The effect of nickel on the conversion of amorphous iron(III) hydroxide into more crystalline iron oxides in alkaline media. J. Chem. Tech. Biot., 53, 73–79.

    Article  CAS  Google Scholar 

  • Cornell R.M. and Schwertmann U. (1996) The iron oxides. Structure, properties, reactions, occurrences and uses. New York: VCH Verlagsgesellschaft.

  • Davies, B. E. (1983). Heavy metal contamination from base metal mining and smelting: Implications for man and his environment. Appl. Environ. Geochem., 1, 425–462.

    Google Scholar 

  • De Faria, D. L. A., Silva, S. V., & De Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxide and oxyhydroxides. J. Raman Spectroscopy., 28, 873–878.

    Article  Google Scholar 

  • Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. Journal of Applied Crystallography, 19, 267–272.

    Article  CAS  Google Scholar 

  • Dutrizac, J. E., & Chen, T. T. (1987). A mineralogical study of the phases formed during the CuSO4–H2SO4–O2 leaching of nickel-copper matte. Can. Metallurg. Quart., 26, 265–276.

    Article  CAS  Google Scholar 

  • Dural, J. (2009). Thermal instability of the tetragonally distorted structure of copper–iron materials. Z. Kristallogr. Suppl., 30, 335–340.

    Google Scholar 

  • Durocher, J., & Schindler, M. (2011). Iron-hydroxide, iron-sulfate and hydrous silica coatings in acid-mine tailings facilities: A comparative study of their trace-element composition. Applied Geochem., 26, 1337–1352.

    Article  CAS  Google Scholar 

  • Ertseva, L. N., Korotkova, O. V., Seregin, P. S., & Fokeeva, I. G. (2003). Distribution of micro-impurities among phases of converter and matte from Pechenganikel’s combine. Russ. J. Applied Chem., 76, 884–887.

    Article  CAS  Google Scholar 

  • Evans J.P., Mackey P.J., and Scott J.D.(1991) Smelter gas cleaning. Impact of gas cooling techniques on smelter dust segregation. In T.J.A. Smith and C.J. Newman (Eds.), Smelter process gas handling and treatment (p. 135-145). Metals and Materials Society, Warrendale.

  • Faungnawakij, K., Shimoda, N., Fukunaga, T., Kikuchi, R., & Eguchi, K. (2009). Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Appl. Catalysis B: Environ. 92, 341–350.

    Google Scholar 

  • Faure, G. (1998). Principles and applications of geochemistry (2nd ed., p. 600p). New Jersey: Prentice-Hall.

    Google Scholar 

  • Freedman, B., & Hutchinson, T. C. (1980). Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Canadian Journal of Botany, 58, 108–132.

    CAS  Google Scholar 

  • Gieré, R., & Querol, X. (2010). Solid particulate matter in the atmosphere. Elements., 6, 215–222.

    Article  Google Scholar 

  • Gilkes, R. J., & Suddliprakarn, A. (1979). Magnetite alteration in deeply weathered adamelite. J. Soil Science., 30, 357–361.

    Article  CAS  Google Scholar 

  • Gbor, P. K., Ahmed, I. B., & Jia, C. Q. (2000). Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag. Hydrometallurgy, 57, 13–22.

    Article  CAS  Google Scholar 

  • Gregurek, D., Reimann, C., & Stumplf, E. F. (1998). Mineralogical fingerprints of industrial emissions—an example from Ni mining and smelting on the Kola Peninsula, NW Russia. Science Total Environ., 221, 189–200.

    Article  CAS  Google Scholar 

  • Gregurek, D., Melcher, F., Pavlov, V. A., Reimann, C., & Stumpfl, E. F. (1999). Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel–copper processing industry, Kola Peninsula, NW Russia. Mineralogy and Petrology, 65, 87–111.

    Article  CAS  Google Scholar 

  • Hamill, P., Jensen, E. J., Russell, P. B., & Bauman, J. J. (1997). The life cycle of stratospheric aerosol particles. Bull. Am. Meteor. Soc., 78, 1395–1410.

    Article  Google Scholar 

  • Henderson, P. J., McMartin, L., Hall, G. E., Percival, J. B., & Walker, D. A. (1998). The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at FlinFlon, Manitoba, Canada. Environ. Geolog., 34, 39–58.

    CAS  Google Scholar 

  • Hogan, G. D., & Wotton, D. L. (1984). Pollutant distribution and effects on forests adjacent to smelters. Journal of Environmental Quality, 13, 377–382.

    Article  CAS  Google Scholar 

  • Huson, D. R., & Travis, G. A. (1961). A native nickel–heazlewoodite–ferroantrevorite assemblage from Mount Clifford, Western Australia. Economic Geology, 76, 1686–1697.

    Article  Google Scholar 

  • Hutchinson, T. C., & Whitby, L. M. (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I. Soil and vegetation contamination by nickel, copper, and other metals. Environmental Conservation, 1, 123–131.

    Article  Google Scholar 

  • Jackson, T. A. (1978). The biogeochemistry of heavy metals in polluted lakes and streams at FlinFlon, Canada, and a proposed method for limiting heavy-metal pollution of natural waters. Environmental Geology, 2, 173–189.

    CAS  Google Scholar 

  • Kalkstein, L. S., & Greene, J. S. (1997). An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environmental Health Perspectives, 105, 84–93.

    Article  CAS  Google Scholar 

  • Kirkpatrick, R. J. (1975). Crystal growth from the melt—a review. American Mineralogist, 60, 798–814.

    CAS  Google Scholar 

  • Kliza, D. A., Telmer, K. T., Bonham-Carter, G. F., Hall, G. E. M. (2000). Geochemistry of snow from the Rouyn-Noranda region of western Quebec: An environmental database. Open File, 3869.

  • Knight, R. D., & Henderson, P. J. (2006). Smelter dust in humus around Rouyn-Noranda, Quebec. Geochem. Exploit. Environ. Analys., 6, 203–214.

    Article  CAS  Google Scholar 

  • Knight R.D., and Henderson P.J. (2005) Characterization of smelter dust from the mineral fraction of humus collected around Rouyn-Noranda, Quebec. In G. Bonham-Carter (Ed.) Metals in the environment around smelters at Rouyn-Noranda, Quebec, and Belledune, New Brunswick: Results and conclusions of the GSC-MITE Point Sources Project. Bulletin, 584. Geological Survey of Canada.

  • Lastra-Quintero, R. (1998). Characterization and separation of a copper smelter dust residue. Can. Metallurg. Quarterly., 26, 85–90.

    Article  Google Scholar 

  • Lofgren, G. (1974). An experimental study of plagioclase morphology. American Journal of Science, 264, 243–273.

    Article  Google Scholar 

  • Lowe, L. E. (1989). Carbohydrates in soil. In M. Schnitzer & S. U. Khan (Eds.), Soil Organic matter (pp. 65–69). New York: Elsevier.

    Google Scholar 

  • Lu, Z., & Muir, D. M. (1987). Dissolution of metal ferrites and iron oxides by HCl under oxidizing and reducing conditions. Hydrometallurgy, 21, 9–21.

    Article  Google Scholar 

  • Mantha, N. M., Schindler, M., Murayama, M., Hochella, M. F. Jr. (2012) Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition. Geochim. Cosmochim. Acta. doi:doi:10.1016/j.gca.2012.01.033

  • Mantha N. and Schindler M. (2012) Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution. II. Metal and Metalloid composition. Geochim. Cosmochim. (in press)

  • McCammon, C. (1995). Mössbauer spectroscopy of minerals. Mineral physics and crystallography. A handbook of physical constants. Washington: AGU.

    Google Scholar 

  • McNear, D. H., Jr., Chaney, R. L., & Sparks, D. L. (2007). The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: A multi-technique investigation Geochim. Cosmochim. Acta., 71, 2190–2208.

    Article  CAS  Google Scholar 

  • Morris, R. V., Kligelhöfer, G., Bernhardt, B., Schröder, C., Radionov, D. S., de Souza Jr, P. A., Yen, A., Gellert, R., Evlanov, E. N., Foh, K. E., Gütlich, P., Ming, D. W., Fenz, F., Wdowiak, T., Squyres, S. W., & Arvidson, R. E. (2004). Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833–836.

    Article  CAS  Google Scholar 

  • National Institute of Advanced Industrial Science and Technology (NIAIST) (2005). Atlas of Eh-pH diagrams, Intercomparison of thermodynamic databases. In N. Takeno (Ed.), Geological Survey of Japan Open File Report No.419, 1–287.

  • Norman, A. L., Belzer, W., & Barrie, L. A. (2004). Insights into the biogenic contribution to total sulphate in aerosol and precipitation in the Fraser Valley afforded by isotopes of sulphur and oxygen. Journal of Geophysical Research, 109, 5311–5320.

    Article  Google Scholar 

  • Nriagu, J. O., & Wong, H. K. (1983). Selenium pollution of lakes near the smelters at Sudbury, Ontario. (1983). Nature, 301, 55–57.

    Article  CAS  Google Scholar 

  • Ozvacic V. (1982) Emissions of sulphur oxides, particulates and trace elements in the Sudbury basin. Ontario Ministry of Environment report SES 008/82, pp. 82.

  • Pavunny S.P., Kumar A., Katiyar R.S. (2010) Raman spectroscopy and field emission characterization of delafossite CuFeO2. Journal of Applied Physics. 107, 013522(1-7).

  • Tan, P., & Zhang, C. (1997). Thermodynamic analysis of nickel smelting Process. Journal of Central South University of Technology, 4, 84–88.

    Article  CAS  Google Scholar 

  • Piatak, N. M., Seal, R. R. I. I., & Hammarstrom, J. M. (2004). Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Applied Geochemistry, 19, 1039–1064.

    Article  CAS  Google Scholar 

  • Piatak, N. M., & Seal, R. R., II. (2010). Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA). Applied Geochemistry, 25, 302–320.

    Article  CAS  Google Scholar 

  • Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360, 376–386.

    Article  CAS  Google Scholar 

  • Samuelsson, C., & Bjorkman, B. (1998). Dust forming mechanisms in the gas cleaning system after the copper converting process. (I) Sampling and characterization. Scand. J. Metallurg., 27, 54–63.

    CAS  Google Scholar 

  • Santana, G. P., Fabris, J. D., Goulart, A. T., & Santana, D. P. (2001). Magnetite and its transformation to hematite in a soil derived from steatite. R. Bras. Ci. Solo., 25, 33–42.

    CAS  Google Scholar 

  • Satta, A., Shamiryan, D., Baklanov, M. R., Whelan, C. M., Quoc, T. L., Beyer, G. P., Vantomme, A., & Maex, K. (2003). The removal of copper oxides by ethyl alcohol monitored in situ by spectroscopic ellipsometry. Journal of the Electrochemical Society, 150, 300–306.

    Article  Google Scholar 

  • Schindler, M., Durocher, J., Abdu, Y., & Hawthorne, F. C. (2009). Hydrous silica coatings: Occurrence, speciation of metals and environmental significance. Environ. Science Tech., 43, 8775–8780.

    Article  CAS  Google Scholar 

  • Schindler, M., Fayek, M., & Hawthorne, F. C. (2010). Uranium in opaline rock-coatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochim. Cosmochim., 74, 187–202.

    Article  CAS  Google Scholar 

  • Sidhu, P. S., Gilkes, R. J., & Posner, A. M. (1981). Oxidation and ejection of nickel and zinc from natural and synthetic magnetites. Soil Science Society of America Journal, 45, 641–644.

    Article  CAS  Google Scholar 

  • Stepakova, L.V., Skirpkin, M. Yu., Korneeva, V.V., Grigoriev, Ya. M. and Burkov, K.A. (2006) Effect of the oxidation state of copper on the solution-solid phase equilibria in CuClx–MCl–H2O systems. Rus. J. Gen. Chem. 76,512-516.

    Google Scholar 

  • Stumm, W. (1992). Chemistry of the solid–water interface (p. 428). New York: Wiley.

    Google Scholar 

  • Tang, X. X., Manthiram, A., & Goodenough, J. B. (1989). Copper ferrite revisited. J. Solid State Chem., 79, 250–262.

    Article  CAS  Google Scholar 

  • Thyse, E. L., Akdogan, G., Taskined, P., & Eksteen, J. J. (2011). The distribution of metallic elements in granulated nickel converter matte phase. South African Pyrometallurgy, 2011(1), 173–184.

    Google Scholar 

  • Utsunomiya, S., Jensen, K. A., Keeler, G. J., & Ewing, R. C. (2004). Direct identification of trace metals in fine and ultra-fine particles in the Detroit urban atmosphere. Environmental Science and Technology, 38, 2289–2297.

    Article  CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil. Sci. Plant. Nutr., 10, 268–292.

    Article  Google Scholar 

  • Vitkova, M., Ettler, V., Kribek, B., Sebek, O., & Mihaljevic, M. (2010). Primary and secondary phases in copper–cobalt smelting slags from the Copperbelt Province Zambia. Mineralogical Magazine, 74, 581–600.

    Article  CAS  Google Scholar 

  • Wang, J. H., Cheng, Z., Bredas, J. L., & Liu, M. (2007). Electronic and vibrational properties of nickel sulfides from first principles. Journal of Chemical Physics, 127, 214705-1–214705-8.

    Google Scholar 

  • Weinbruch, S., Van Aken, P., Ebert, M., Thomassen, Y., Skogstad, A., Chashchin, V. P., & Nikonov, A. (2002). The heterogeneous composition of working place aerosols in a nickel refinery: A transmission and scanning electron microscope study. Journal of Environmental Monitoring, 4, 344–350.

    Article  CAS  Google Scholar 

  • Whitby, L. M., Stokes, P. M., Hutchinson, T. C., & Myslik, G. (1976). Ecological consequence of acidic and heavy-metal discharges from the Sudbury smelters. The Canadian Mineralogist, 14, 47–57.

    Google Scholar 

  • Wren, C. (2012). Risk assessment and environmental management: A case study in Sudbury, Ontario, Canada. Progress in Environmental Science, Technology and Management, 1, 1–450.

  • Zoltai, S. (1988). Distribution of base metals in peat near a smelter at FlinFlon. Manitoba. Water, Air, and Soil Pollution, 37, 217–228.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery grants to MS, AMcD, and FCH; NSERC summer student scholarships to SL and KS; and an Ontario Graduate Scholarship to NM. MH acknowledges NSF and EPA under NSF Cooperative Agreement EF-0830093. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to EPA review and no official endorsement should be inferred. We would like to thank the technical staff members at the Central Analytical Facility, Laurentian University and at the Nanoscale Characterization and Fabrication Laboratory, ICTAS, Virginia Tech, for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schindler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanteigne, S., Schindler, M., McDonald, A.M. et al. Mineralogy and Weathering of Smelter-Derived Spherical Particles in Soils: Implications for the Mobility of Ni and Cu in the Surficial Environment. Water Air Soil Pollut 223, 3619–3641 (2012). https://doi.org/10.1007/s11270-012-1135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1135-3

Keywords

Navigation