Skip to main content

Advertisement

Log in

Carboxylate-Terminated Double-Hydrophilic Block Copolymer as an Effective and Environmentally Friendly Inhibitor for Carbonate and Sulfate Scales in Cooling Water Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Formation of mineral scales of carbonate and sulfate poses significant problems in cooling water systems. For the control of carbonate and sulfate scales and in response to environmental guidelines, a novel phosphorus-free and non-nitrogen double-hydrophilic block copolymer (AL) was synthesized. The anti-scale property of the AL copolymer towards CaCO3 and CaSO4 in the artificial cooling water was studied through static scale inhibition tests. The observation shows that the dosage of AL plays an important role on CaCO3 and CaSO4 inhibition. The effect on formation of CaCO3 and CaSO4 was investigated with combination of scanning electronic microscopy, transmission electron microscopy, and X-ray powder diffraction analysis, respectively. Inhibition mechanism is proposed that the interactions between calcium and polyethylene glycol are the fundamental impetus to restrain the formation of the scale in cooling water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aglaia, G. X., John, M., & Petros, G. K. (1992). The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds. Journal of Colloid and Interface Science, 153(2), 537–551.

    Article  Google Scholar 

  • Ajikumar, P. K., Michellelow, B. J., & Valiyaveettil, S. (2005). Role of soluble polymers on the preparation of functional thin films of calcium carbonate. Surface and Coatings Technology, 198(1–3), 227–230.

    Article  CAS  Google Scholar 

  • Al Nasser, W. N., Al-Salhi, F. H., Hounslow, M. J., & Salman, A. D. (2011). Inline monitoring the effect of chemical inhibitor on the calcium carbonate precipitation and agglomeration. Chemical Engineering Research and Design, 89(5), 500–511.

    Article  CAS  Google Scholar 

  • Amjad, Z. (1989). Constant-composition study of dicalcium phosphatedihydrate crystallite growth in the presence of poly (acrylic acids). Langmuir, 5(5), 1222–1225.

    Article  CAS  Google Scholar 

  • Austin, A. E., Miller, J. F., Vaughan, D. A., & Kircher, J. F. (1975). Chemical additives for calcium sulfate scale control. Desalination, 16(3), 345–357.

    Article  CAS  Google Scholar 

  • Ben Amor, M., Zgolli, D., Tlili, M. M., & Manzola, A. S. (2004). Influence of water hardness, substrate nature and temperature on heterogeneous calcium carbonate nucleation. Desalination, 166(15), 79–84.

    Article  Google Scholar 

  • Bouyer, F., Gerardin, C., & Fajula, F. (2003). Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles. Colloids and Surfaces A, 217(1–3), 179–184.

    Article  CAS  Google Scholar 

  • Du, K., Zhou, Y. M., & Da, L. Y. (2008). Preparation and properties of polyether scale inhibitor containing fluorescent groups. International Journal of Polymeric Materials, 57(8), 785–796.

    Article  CAS  Google Scholar 

  • Du, K., Zhou, Y. M., & Wang, Y. Y. (2009). Fluorescent-tagged no phosphate and nitrogen free calcium phosphate scale inhibitor for cooling water systems. Journal of Applied Polymer Science, 113, 1966–1974.

    Article  CAS  Google Scholar 

  • El Dahan, H. A., & Hegazy, H. S. (2000). Gypsum scale control by phosphate ester. Desalination, 127(2), 111–118.

    Article  CAS  Google Scholar 

  • Fu, C., Zhou, Y., Liu, G., Huang, J., & Sun Wei, Wu. W. (2011). Inhibition of Ca3(PO4)2, CaCO3, and CaSO4 precipitation for industrial recycling water. Industrial & Engineering Chemistry Research, 50(18), 10393–10399.

    CAS  Google Scholar 

  • Harada, A., & Kataoka, K. (1995). Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules, 28(15), 5294–5298.

    Article  CAS  Google Scholar 

  • Harada, A., & Kataoka, K. (1998). Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly distributed micelles from lysozyme and poly(ethylene glycol)-poly-(aspartic acid) block copolymer in aqueous medium. Macromolecules, 31(2), 288–294.

    Article  CAS  Google Scholar 

  • Harada, A., & Kataoka, K. (2003a). Switching by pulse electric field of the elevated enzymatic reaction in the core of polyion complex micelles. Journal of the American Chemical Society, 121(50), 15306–15307.

    Article  Google Scholar 

  • Harada, A., & Kataoka, K. (2003b). Effect of charged segment length on physicochemical properties of core–shell type polyion complex micelles from block ionomers. Macromolecules, 36(13), 4995–5001.

    Article  CAS  Google Scholar 

  • Kim, D. S., & Lee, C. K. (2002). Surface modification of precipitated calcium carbonate using aqueous fluosilicic acid. Applied Surface Science, 202(1–2), 15–23.

    Article  CAS  Google Scholar 

  • Kjellin, P. (2003). X-ray diffraction and scanning electron microscopy studies of calcium carbonate electrodeposited on a steel surface. Colloids and Surfaces A, 212(1), 19–26.

    Article  CAS  Google Scholar 

  • Kumar, T., Vishwanatham, S. S., & Du, K. (2010). A laboratory study on pteroyl-l-glutamic acid as a scale prevention inhibitor of calcium carbonate in aqueous solution of synthetic produced water. Journal of Petroleum Science and Engineering, 71(1–2), 1–7.

    Article  CAS  Google Scholar 

  • Kuriyavar, S. I., Vetrivel, R., Hegde, S. G., Ramaswamy, A. V., Chakrabarty, D., & Mahapatra, S. (2000). Insights into the formation of hydroxyl ions in calcium carbonate: temperature dependent FTIR and molecular modelling studies. Journal of Material Chemistry, 10, 1835–1840.

    Article  CAS  Google Scholar 

  • Li, H., Hsieh, M. K., Chien, S. H., Monnell, J. D., Dzombak, D. A., & Vidic, R. D. (2011). Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater. Water Research, 45(2), 748–760.

    Article  CAS  Google Scholar 

  • Liu, Z. Y., Sun, Y. H., & Zhou, X. H. (2011). Synthesis and scale inhibitor performance of polyaspartic acid. Journal of Environmental Sciences, 23, 153–155.

    Article  CAS  Google Scholar 

  • Marina, P., Emilia, O., Amedeo, L., & Dino, M. (2009). Gypsum scale control by nitrilotrimethylenephosphonic acid. Industrial &Engineering Chemistry Research, 48(24), 10877–10883.

    Article  Google Scholar 

  • Pecheva, E., Lilyana, P., & George, A. (2007). Hydroxyapatite grown on a native extracellular matrix: initial interactions with human fibroblasts. Langmuir, 23(18), 9386–9392.

    Article  CAS  Google Scholar 

  • Reddy, M. M., & Nancollas, G. H. (1973). Calcite crystal growth inhibition by phosphonates. Desalination, 12(1), 61–73.

    Article  CAS  Google Scholar 

  • Rees, S. G., Wassell, D. T. H., Shellis, R. P., & Embery, G. (2004). Effect of serum albumin on glycosaminoglycan inhibition of hydroxyapatite formation. Biomaterials, 25(6), 971–977.

    Article  CAS  Google Scholar 

  • Rudloff, J., & Colfen, H. (2004). Superstructures of temporarily stabilized nanocrystalline CaCO3 particles: morphological control via water surface tension variation. Langmuir, 20, 991–996.

    Article  CAS  Google Scholar 

  • Saleah, A. O., & Basta, A. H. (2008). Evaluation of some organic-based biopolymers as green inhibitors for calcium sulfate scales. Environmentalist, 28(4), 421–428.

    Article  Google Scholar 

  • Senthilmurugan, B., Ghosh, B., & Sanker, S. (2011). High performance maleic acid based oil well scale inhibitors—development and comparative evaluation. Journal of Industrial and Engineering Chemistry, 17(3), 415–420.

    Article  CAS  Google Scholar 

  • Shakkthivel, P., & Vasudevan, T. (2006). Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems. Desalination, 197(1–3), 179–189.

    Article  CAS  Google Scholar 

  • Shakkthivel, P., Sathiyamoorthi, R., & Vasudevan, T. (2004). Development of acrylonitrile copolymers for scale control in cooling water systems. Desalination, 164(2), 111–123.

    Article  CAS  Google Scholar 

  • Suharso, B., Syaiful, B., & Teguh, E. (2011). Gambier extracts as an inhibitor of calcium carbonate (CaCO3) scale formation. Desalination, 265(1–3), 102–106.

    Article  CAS  Google Scholar 

  • Uayama, N., Hosoi, T., & Yamada, Y. (1998). Calcium complexes of carboxylate-containing polyamide with sterically disposed NH···O hydrogen bond: detection of the polyamide in calcium carbonate by 13C cross-polarization/magic angle spinning spectra. Macromolecules, 31(21), 7119–7126.

    Article  Google Scholar 

  • Water treatment reagent unit of standardization research institute of chemical industry of china, application guidebook on water quality of circulation cooling water and standard of water treatment reagents (in Chinese) [M], Chemical Industry Press, Beijing, 2003

  • Weiss, P., Obadia, L., Magne, D., Bourges, X., Rau, C., Weitkamp, T., Khairoun, I., Bouler, J. M., Chappard, D., Gauthier, O., & Daculsi, G. (2003). Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials, 24(25), 4591–4601.

    Article  CAS  Google Scholar 

  • Yu, S. H., Colfen, H., & Antonietti, M. (2003). Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures. The Journal of Chemical Physics B, 107(30), 7396–7405.

    Article  CAS  Google Scholar 

  • Zhang, B. R., Zhang, L., Li, F. T., Hu, W., & Hannam, P. M. (2010). Testing the formation of Ca–phosphonate precipitates and evaluating the anionic polymers as Ca–phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water. Corrosion Science, 52(12), 3883–3890.

    Article  CAS  Google Scholar 

  • Zhou, X. H., Sun, Y. H., & Wang, Y. Z. (2011). Inhibition and dispersion of polyepoxysuccinate as a scale inhibitor. Journal of Environmental Sciences, 23, 159–161.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51077013); Special funds for Jiangsu Province Scientific and Technological Achievements Projects of China (BA2011086); Program for Training of 333 High-Level Talent, Jiangsu Province of China (BRA2010033); Scientific Innovation Research Foundation of College Graduate in jiansu Province (CXLX-0134); and the Scientific Research Foundation of Graduate of Southeast University (YBJJ1110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhou, Y., Huang, J. et al. Carboxylate-Terminated Double-Hydrophilic Block Copolymer as an Effective and Environmentally Friendly Inhibitor for Carbonate and Sulfate Scales in Cooling Water Systems. Water Air Soil Pollut 223, 3601–3609 (2012). https://doi.org/10.1007/s11270-012-1133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1133-5

Keywords

Navigation