Skip to main content
Log in

Assessment of s-Triazine Catabolic Potential in Soil Bacterial Isolates Applying atz Genes as Functional Biomarkers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Fluorescence in situ hybridization (FISH) technique and qPCR analyses, targeting atz genes, were applied to detect the presence of simazine-degrading bacteria in an agricultural soil with a history of herbicide application. atzB-targeted bacteria detected by FISH represented 5% of total soil bacteria with potential capability to metabolize the herbicide. The soil natural attenuation capacity was confirmed in soil microcosms by measuring simazine degradation. Moreover, four bacterial strains were isolated from the soil and identified as Acinetobacter lwoffii, Pseudomonas putida, Rhizobium sp. and Pseudomonas sp. The isolates were able to grow using different s-triazine compounds and related metabolites as the sole carbon source. Growth parameters in presence of simazine were calculated using the Gompertz model. Rhizobium sp. showed the highest simazine degradation (71.2%) and mineralization (38.7%) rates, whereas the lowest values were found to A. lwoffii—50.4% of degradation and 22.4% of mineralization. Results from qPCR analyses of atzA, atzB and atzC genes revealed their presence in Rhizobium sp. and A. lwoffii, being atzB and atzC the most abundant functional genes. Rhizobium sp. showed a higher amount of the three biomarkers compared to A. lwoffii: the atzA, atzB and atzC gene copy number per microlitre were, respectively, 101, 102 and 103-fold higher in the former. Therefore the proposed molecular approaches based on the use of atz genes as biomarkers can be considered as useful tools to evaluate the presence and potential capability of degrading-s-triazines soil microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barra Caracciolo, A., Grenni, P., Cupo, C., & Rossetti, S. (2005). In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiology Letters, 253, 55–58.

    Article  CAS  Google Scholar 

  • Barra Caracciolo, A., Fajardo, C., Grenni, P., Saccà, M. L., Amalfitano, S., Ciccoli, R., Martin, M., & Gibello, A. (2010). The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiology Ecology, 71(1), 127–136.

    Article  Google Scholar 

  • Blazevic, D. J., Koepcke, M. H., & Matsen, J. M. (1973). Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. Applied Microbiology, 25, 107–110.

    CAS  Google Scholar 

  • Bouquard, C., Ouazzani, J., Prome, J. C., Michel-Briand, Y., & Plesiat, P. (1997). Dechlorination of atrazine by a Rhizobium sp. isolate. Applied and Environmental Microbiology, 63, 862–866.

    CAS  Google Scholar 

  • Changey, F., Devers-Lamrani, M., Rouard, N., & Martin-Laurent, F. (2011). In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: Evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene, 490(1–2), 18–25.

    Article  CAS  Google Scholar 

  • Chini, V., Foka, A., Dimitracopoulos, G., & Spiliopoulou, I. (2007). Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: Evaluation by two mathematical models. Letters in Applied Microbiology, 45, 479–484.

    Article  CAS  Google Scholar 

  • Devers, M., Soulas, G., & Martin-Laurent, F. (2004). Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal of Microbiological Methods, 56, 3–15.

    Article  CAS  Google Scholar 

  • Dinamarca, M. A., Cereceda-Balic, F., Fadic, X., & Seeger, M. (2007). Analysis of s-triazine-degrading microbial communities in soils using most-probable-number enumeration and tetrazolium-salt detection. International Microbiology, 10, 209–215.

    CAS  Google Scholar 

  • EPA. (2003). Atrazine Interim Reregistration Eligibility Decision (IRED) Q&A’s—January 2003. U.S. Environmental Protection Agency, Washington DC. http://www.epa.gov/pesticides/factsheets/atrazine_addendum.htm.

  • Fajardo, C., Ortíz, L. T., Rodríguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2011). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere. doi:10.1016/j.chemosphere.2011.11.041.

  • Flores, C., Morgante, V., González, M., Navia, R., & Seeger, M. (2009). Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile. Chemosphere, 74, 1544–1549.

    Article  CAS  Google Scholar 

  • Gerhardt, P., Murray, R. G., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., & Phillips, G. B. (1995). Manual of methods for general and molecular bacteriology. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Grimont, P. A. D., & Bouvet, P. J. M. (1986). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumanii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. International Journal of Systematic Bacteriology, 36, 228–240.

    Article  Google Scholar 

  • Gunasekara, A. S., Troiano, J., Goh, K. S., & Tjeerdema, R. S. (2007). Chemistry and fate of simazine. Reviews of Environmental Contamination and Toxicology, 189, 1–23.

    Article  CAS  Google Scholar 

  • Iwasaki, A., Takagi, K., Yoshiok, Y., Fujii, K., Kojima, Y., & Harada, N. (2007). Isolation and characterization of a novel simazine-degrading β-proteobacterium and detection of genes encoding s-triazine-degrading enzymes. Pest Management Science, 63, 261–268.

    Article  CAS  Google Scholar 

  • Katz, I., Dosoretz, C. G., Mandelbaum, R. T., & Green, M. (2001). Atrazine degradation under denitrifying conditions in continuous culture of Pseudomonas ADP. Water Research, 35(13), 3272–3275.

    Article  CAS  Google Scholar 

  • Madhavi, B., Anand, C. S., Bharathi, A., & Polasa, H. (1994). Biotoxic effects of pesticides on symbiotic properties of Rhizobial sps. Bulletin of Environmental Contamination and Toxicology, 52, 87–94.

    Article  CAS  Google Scholar 

  • Mandelbaum, R. T., Allan, D. L., & Wackett, L. P. (1995). Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Applied and Environmental Microbiology, 61, 1451–1457.

    CAS  Google Scholar 

  • Martín, M., Gibello, A., Lobo, C., Nande, M., Garbi, C., Fajardo, C., Barra-Caracciolo, A., Grenni, P., & Martínez-Iñigo, M. J. (2008). Application of fluorescence in situ hybridization technique to detect simazine degrading bacteria in soil samples. Chemosphere, 71, 703–710.

    Article  Google Scholar 

  • Martínez-Iñigo, M. J., Gibello, A., Lobo, C., Nande, M., Vargas, R., Garbi, C., Fajardo, C., & Martín, M. (2010). Evaluation of the atzB gene as a functional marker for the simazine-degrading potential of an agricultural soil. Applied Soil Ecology, 45, 218–224.

    Article  Google Scholar 

  • Ralebitso, T. K., Senior, E., & van Verseveld, H. W. (2002). Microbial aspects of atrazine degradation in natural environments. Biodegradation, 13, 11–19.

    Article  Google Scholar 

  • Sadowsky, M. J., de Souza, M. L., & Eackett, L. P. (1998). The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. Applied and Environmental Microbiology, 64, 2323–2336.

    Google Scholar 

  • Sadowsky, M., Martínez, N. A. B., Tomkins, J., Wackett, L. P., & Wing, R. (2001). Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. Journal of Bacteriology, 183, 5684–5697.

    Article  Google Scholar 

  • Sánchez, M., Garbi, C., Martínez-Álvarez, R., Ortiz, L. T., Allende, J. L., & Martín, M. (2005). Klebsiella planticola strain DSZ mineralizes simazine: Physiological adaptations involved in the process. Applied Microbiology and Biotechnology, 66, 589–596.

    Article  Google Scholar 

  • Sanderson, J. T., Letcher, R. J., Heneweer, M., Giesy, J. P., & van den Berg, M. (2001). Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environmental Health Perspectives, 109, 1027–1031.

    Article  CAS  Google Scholar 

  • Santiago-Mora, R., Martin-Laurent, F., de Prado, R., & Franco, A. R. (2005). Degradation of simazine by microorganisms isolated from soils of Spanish olive fields. Pest Management Science, 61, 917–921.

    Article  CAS  Google Scholar 

  • Seffernick, J., Jonson, G., Sadowsky, M. J., & Wackett, L. P. (2000). Substrate specificity of atrazine chlorohydrolase and atrazine-catabolizing bacteria. Applied and Environmental Microbiology, 66, 4247–4252.

    Article  CAS  Google Scholar 

  • Seffernick, J., Aleem, A., Osborne, J., Johnson, G., Sadowsky, M., & Wackett, L. (2007). Hydroxyatrazine N-ethylaminohydrolase (AtzB): An amidohydrolase superfamily enzyme catalyzing deamination and dechlorination. Journal of Bacteriology, 189, 6989–6997.

    Article  CAS  Google Scholar 

  • Shiomi, N., Yamaguchi, Y., Nakai, H., Fujita, T., Katsuda, T., & Katoh, S. (2006). Degradation of cyanuric acid in soil by Pseudomonas sp. NRRL B-12227 using bioremediation with self-immobilization system. Journal of Bioscience and Bioengineering, 102(3), 206–209.

    Article  CAS  Google Scholar 

  • Singh, G., & Wright, D. (2002). In vitro studies on the effects of herbicides on the growth of rhizobia. Letters in Applied Microbiology, 35(1), 12–6.

    Article  CAS  Google Scholar 

  • Singh, P., Suri, C. R., & Swaranjit, S. C. (2004). Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochemical and Biophysical Research Communications, 317, 697–702.

    Article  CAS  Google Scholar 

  • Smith, D., & Crowley, D. E. (2006). Contribution of ethylamine degrading bacteria to atrazine degradation in soils. FEMS Microbiology Ecology, 58, 271–7.

    Article  CAS  Google Scholar 

  • Topp, E., Zhu, H., Nour, S. M., Houot, S., Lewis, M., & Cuppels, S. (2000a). Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Applied Microbiology and Biotechnology, 66, 2773–2782.

    CAS  Google Scholar 

  • Topp, E., Mulbry, W. M., Zhu, H., Nour, S. M., & Cuppels, S. (2000b). Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Applied and Environmental Microbiology, 66, 3134–3141.

    Article  CAS  Google Scholar 

  • Vanbroekhoven, K., Ryngaert, A., Wattiau, P., De Mot, R., & Springael, D. (2004). Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR–DGGE fingerprinting. FEMS Microbiology Ecology, 50(1), 37–50.

    Article  CAS  Google Scholar 

  • Wackett, L. P., Sadowsky, M. J., & Martínez, B. (2002). Biodegradation of atrazine and related s-triazines compunds: From enzymes to field studies. Applied Microbiology and Biotechnology, 58, 39–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by Ministerio de Ciencia y Tecnologia (Project CTM2010-20617-CO2-01) and Comunidad de Madrid (EIADES Project S2009/AMB-1478). We are grateful to M.J. Sadowsky for providing to us the Pseudomonas sp. strain ADP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Fajardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fajardo, C., Saccà, M.L., Gibello, A. et al. Assessment of s-Triazine Catabolic Potential in Soil Bacterial Isolates Applying atz Genes as Functional Biomarkers. Water Air Soil Pollut 223, 3385–3392 (2012). https://doi.org/10.1007/s11270-012-1117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1117-5

Keywords

Navigation