Skip to main content
Log in

Numerical Modelling of Waste Stabilization Ponds: Where Do We Stand?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Waste stabilization pond (WSP) technology has been an active area of research for the last three decades. In spite of its relative simplicity of design, operation and maintenance, the various processes taking place in WSP have not been entirely quantified. Lately, modelling has served as an important, low-cost tool for a better description and an improved understanding of the system. Although several papers on individual pond models have been published, there is no specific review on different models developed so far. This paper aims at filling this gap. Models are compared by focussing on their key features like the presence and comprehensiveness of a water quality sub-model in terms of aerobic/anoxic and anaerobic carbon removal and nutrient removal; the type of hydraulic sub-model used (0D, 1D, 2D or 3D); the software used for implementation and simulation; and whether or not sensitivity analysis, calibration and validation were done. This paper also recommends future directions of research in this area. In-depth study of the published models reveals a clear evolution over time in the concept of modelling, from just hydraulic empirical models to 3D ones and from simple first-order water quality models to complex ones which describe key biochemical processes as a set of mathematical equations. Due to the inherent complexity, models tend to focus only on specific aspects whilst ignoring or simplifying others. For instance, many models have been developed that either focus solely on hydrodynamics or solely on biochemical processes. Models which integrate both aspects in detail are still rare. Furthermore, it is evident from the review of the different models that calibration and validation with full-scale WSP data is also scarce. Hence, we believe that there is a need for the development of a comprehensive, calibrated model for waste stabilization ponds that can reliably serve as a support tool for the improvement and optimization of pond design and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COD:

Chemical oxygen demand

MP:

Maturation pond

DO:

Dissolved oxygen

FP:

Facultative pond

HRT:

Hydraulic retention time

CFD:

Computational fluid dynamics

SFP:

Secondary facultative pond

CSTR:

Continuous stirred tank reactor

References

  • Abbas, H., Nasr, R., & Seif, H. (2006). Study of waste stabilization pond geometry for the wastewater treatment efficiency. Ecological Engineering, 28, 25–34.

    Article  Google Scholar 

  • Agunwamba, J. C., Egbuniwe, N., & Ademiluyi, J. O. (1992). Prediction of dispersion number in waste stabilization ponds. Water Research, 26, 85–89.

    Article  CAS  Google Scholar 

  • Aldana, G. J., Lloyd, B. J., Guganesharajah, K., & Bracho, N. (2005). The development and calibration of a physical model to assist in optimising the hydraulic performance and design of maturation ponds. Water Science and Technology, 51(12), 173–181.

    CAS  Google Scholar 

  • Banda, C. G., Sleigh, P. A. & Mara, D. D. (2006a) 3D-CFD modelling of E. coli removal in baffled primary facultative ponds: Classical design optimization. 7th IWA Specialist Conference on Waste Stabilization Ponds, Bangkok, Thailand.

  • Banda, C. G., Sleigh, P. A., & Mara, D. D. (2006b) CFD-based design of waste stabilization ponds: Significance of wind velocity. 7th IWA Specialist Conference on Waste Stabilization Ponds, Bangkok, Thailand.

  • Banks, C. J., Koloskov, G. B., Lock, A. C., & Heaven, S. (2003). A computer simulation of the oxygen balance in a cold climate winter storage WSP during the critical spring warm-up period. Water Science and Technology, 48(2), 189–196.

    CAS  Google Scholar 

  • Beran, B., & Kargi, F. (2005). A dynamic mathematical model for wastewater stabilization ponds. Ecological Modelling, 181, 39–57.

    Article  CAS  Google Scholar 

  • Buhr, H. O., & Miller, S. B. (1983). A dynamic model of the high-rate algal–bacterial wastewater treatment pond. Water Resources, 17, 29–37.

    CAS  Google Scholar 

  • Craggs, R. J., Zwart, A., Nagels, J. W., & Davies-Colley, R. J. (2004). Modelling sunlight disinfection in high rate pond. Ecological Engineering, 22, 113–122.

    Article  Google Scholar 

  • Dochain, D., Gregoire, S., Pauss, A., & Schaegger, M. (2003). Dynamic modelling of a waste stabilization pond. Bioprocess & Biosystems Engineering, 26, 19–26.

    Article  CAS  Google Scholar 

  • Ekama, G.A., Wentzel, M.C., Sötemann, S.W. (2006). Tracking the inorganic suspended solids through biological treatment units of wastewater treatment plants. Water Research, 40(19), 3587–3595.

    Google Scholar 

  • Escalas-Canellas, A., Abrego-Gongora, C. J., Barajas-Lopez, M. G., Houweling, D., & Comeau, Y. (2008). A time series model for influent temperature estimation: Application of dynamic temperature modelling of an aerated lagoon. Water Research, 42, 2551–2562.

    Article  CAS  Google Scholar 

  • Gehring, T., Silva, J. D., Kehl, O., Castilhos Jr, A.B., Costa, R.H.R., Uhlenhut, F., Alex, J., Horn, H., & Wichern, M. (2009). Modeling waste stabilization ponds with an extend version of ASM 3. 8 th IWA Specialist Group Conference on Waste Stabilization Ponds, Belo Horizonte, Brazil.

  • Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., & Marais, G. R. (1995). Activated sludge model no. 2. Scientific and Technical Report No. 3. London, UK: IWA Publishing.

    Google Scholar 

  • Houweling, D., Kharoune, L., Escalas, A., & Comeau, Y. (2005). Modelling ammonia removal in aerated facultative lagoon. Water Science and Technology, 51(12), 139–142.

    CAS  Google Scholar 

  • Jupsin, H., & Vasel, J. L. (2007). Modelisation of the contribution of sediments in the treatment process case of aerated lagoons. Water Science and Technology, 51(11), 21–27.

    Article  Google Scholar 

  • Jupsin, H., Praet, E., & Vasel, J.-L. (2003). Dynamic mathematical model of high rate algal ponds (HRAP). Water Science and Technology, 48(2), 197–204.

    CAS  Google Scholar 

  • Kayombo, S., Mbwette, T. S. A., Mayo, A. W., Katima, J. H. Y., & Jorgensen, S. E. (2000). Modelling diurnal variation of dissolved oxygen in waste stabilization ponds. Ecological Modelling, 127, 21–31.

    Google Scholar 

  • Langergraber, G., Rousseau, D. P. L., Garcia, J., & Mena, J. (2009). CWM1: A general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Science and Technology, 59(9), 1687–1697.

    Article  CAS  Google Scholar 

  • Leeds, U. O. (2011). Computational fluid dynamics. CFD Center, University of Leeds, Leeds, LS2 9JT, UK. Retrieved 1 September 2011 from http://www.engineering.leeds.ac.uk/cfd/pdf/CFD-LEEDS.pdf.

  • Manga, J. G., Molinares, N. R., Orlando Soto, E., Arrieta, J., Escaf German, J., & Hernandez Gustavo, A. (2004). Influence of inlet–outlet structures on the flow pattern of a waste stabilization pond. 6th International Conference of Waste Stabilization Ponds, Avignon, France.

  • Middlebrooks, J. E., & Pano, A. (1983). Nitrogen removal in aerated lagoons. Water Resources, 17(10), 1369–1378.

    CAS  Google Scholar 

  • Moreno, M. D. (1990). A tracer study of the hydraulics of facultative stabilization ponds. Water Resources, 24, 1025–1030.

    CAS  Google Scholar 

  • Moreno-Grau, S., Garcia-Sanchez, A., Moreno-Clavel, J., Serrano-Aniorte, J., & Moreno-Grau, M. D. (1996). A mathematical model for waste water stabilization ponds with macrophytes and microphytes. Ecological Modelling, 91, 77–103.

    Article  CAS  Google Scholar 

  • Nameche, T. H., & Vasel, J. L. (1998). Hydrodynamic studies and modelization for aerated lagoons and waste stabilization ponds. Water Research, 32(10), 3039–3045.

    Article  CAS  Google Scholar 

  • Nelson, K. L., Cisneros, B. J., Tchobanoglous, G., & Darby, J. L. (2004). Sludge accumulation, characteristics, and pathogen inactivation in four primary waste stabilization ponds in Central Mexico. Water Research, 38, 111–127.

    Article  CAS  Google Scholar 

  • Oliveira-Esquerre, K. P., Seborg, D. E., Bruns, R. E., & Mori, M. (2004). Application of steady state and dynamic modelling for the prediction of BOD of an aerated lagoon at a pulp and paper mill. Part 1. Linear approaches. Chemical Engineering Journal, 104, 73–81.

    Article  CAS  Google Scholar 

  • Oliveira-Esquerre, K. P., Seborg, D. E., Mori, M., & Bruns, R. E. (2004). Application of steady state and dynamic modelling for the prediction of BOD of an aerated lagoon at a pulp and paper mill. Part 2. Nonlinear approaches. Chemical Engineering Journal, 105, 61–69.

    Article  CAS  Google Scholar 

  • Oswald, W. J. (1988). Micro-algae and waste-water treatment. In M. A. Borowitzka & L. J. Borowitzka (Eds.), Micro-algal biotech (pp. 305–328). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ouldali, S., Leduc, R., & Nguyen, V.-T.-V. (1989). Uncertainty modelling of facultative aerated lagoon system. Water Resource, 23(4), 451–459.

    CAS  Google Scholar 

  • Peng, J.-F., Wang, B.-Z., Song, Y.-H., & Yuan, P. (2007). Modelling N transformation and removal in a duckweed pond: Model development and calibration. Ecological Modelling, 206, 147–152.

    Article  Google Scholar 

  • Polprasert, C., & Agarwalla, B. K. (1994). A facultative pond model incorporating biofilm activity. Water Environment Research, 66, 725–732.

    Article  CAS  Google Scholar 

  • Pougatch, K., Salcedean, M., Gartshore, I., & Pagoria, A. (2007). Computational modelling of large aerated lagoon hydraulics. Water Research, 41, 2109–2116.

    Article  CAS  Google Scholar 

  • Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyody, L., & Vanrolleghem, P. (2001). River water quality model no. 1: Biochemical process equations. Water Science and Technology, 43(5), 11–30.

    CAS  Google Scholar 

  • Ruochuan, G., & Heinz, G. S. (1995). Stratification dynamics in wastewater stabilization ponds. Water Resources, 29, 1909–1923.

    Google Scholar 

  • Sah, L., Rousseau, D. P. L., Hooijmans, C. M., & Lens, P. N. L. (2011). 3D model for a secondary facultative pond. Ecological Modelling, 222(9), 1592–1603.

    Article  CAS  Google Scholar 

  • Salter, H. E., Ta, C. T., Ouki, S. K., & Williams, S. C. (2000). Three-dimensional computational fluid dynamic modelling of a facultative lagoon. Water Science and Technology, 42(10), 335–342.

    Google Scholar 

  • Senzia, M. A., Mayo, A. W., Mbwette, T. S. A., Katima, J. H. Y., & Jorgensen, S. E. (2002). Modelling nitrogen transformation and removal in primary facultative ponds. Ecological Modelling, 154, 207–215.

    Article  CAS  Google Scholar 

  • Shilton, A. (2005). Pond treatment technology. London: IWA Publishing. ISBN 1843390205.

    Google Scholar 

  • Shilton, A., & Harrison, J. (2003). Integration of coliform decay within a CFD (computational fluid dynamic) model of a waste stabilisation pond. Water Science and Technology, 48(2), 205–210.

    CAS  Google Scholar 

  • Shilton, A. N., & Mara, D. D. (2005). CFD (computational fluid dynamics) modelling of baffles for optimizing tropical waste stabilization pond system. Water Science and Technology, 51(12), 103–106.

    CAS  Google Scholar 

  • Sweeney, D. G., Cromer, N. J., Nixon, J. B., Ta, C. T., & Fallowfield, H. J. (2003). The spatial significance of water quality indicators in waste stabilization ponds—Limitations of residence time distribution analysis in predicting treatment efficiency. Water Science and Technology, 48(2), 211–218.

    CAS  Google Scholar 

  • Sweeney, D. G., Nixon, J. B., Cromer, N. J., & Fallowfield, H. J. (2005). Profiling and modelling of thermal changes in a large waste stabilisation pond. Water Science and Technology, 51(12), 163–172.

    CAS  Google Scholar 

  • Toprak, H. (1994). Empirical modelling of sedimentation which occurs in anaerobic waste stabilization ponds using a lab-scale semi-continuous reactor. Environmental Technology, 15(2), 125–134.

    Article  CAS  Google Scholar 

  • Vega, G. P., Pena, M. R., Ramirez, C., & Mara, D. D. (2003). Application of CFD modelling to study the hydrodynamics of various anaerobic pond configurations. Water Science and Technology, 48(2), 163–171.

    CAS  Google Scholar 

  • Versteeg, H. K., Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson Education Limited. ISBN 978-0-13-127498-3.

  • von Sperling, M. (2005). Modelling coliform removal in 186 facultative and maturation ponds around the world. Water Research, 39, 5261–5273.

    Article  Google Scholar 

  • Wehner, J. F., & Wilhelm, R. H. (1956). Boundary conditions of flow reactors. Chemical Engineering, 6, 89–96.

    Article  CAS  Google Scholar 

  • Wood, M. G., Greenfield, P. F., Howes, T., Johns, M. R., & Keller, J. (1995). Computational fluid dynamic modelling of wastewater ponds to improve design. Water Science and Technology, 31(12), 111–118.

    Article  CAS  Google Scholar 

  • Wood, M. G., Howes, T., Keller, J., & Johns, M. R. (1998). Two dimensional computational fluid dynamic models for waste stabilization ponds. Water Research, 32, 958–963.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik P. L. Rousseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sah, L., Rousseau, D.P.L. & Hooijmans, C.M. Numerical Modelling of Waste Stabilization Ponds: Where Do We Stand?. Water Air Soil Pollut 223, 3155–3171 (2012). https://doi.org/10.1007/s11270-012-1098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1098-4

Keywords

Navigation