Skip to main content

Advertisement

Log in

Use of Biosolids for Phytocapping of Landfill Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Conventional clay capping for post-closure management of landfill commonly cracks and deteriorates over time. As a consequence, water ingress into waste increases as a function of time, potentially causing a range of environmental issues. An alternative approach is known as phytocapping, which utilizes select plant species to control cap stability and moisture percolation. In this study, growth of Arundo donax L. (giant reed), Brassica juncea (L.) Czern. (Indian mustard), and Helianthus annuus L. (sunflower) on a landfill site was studied with different biosolid amendment rates (0, 25, and 50 Mg ha−1). Cultivation of the landfill cap and amendment with biosolids significantly improved the characteristics of the soil. Growth of each plant species increased due to biosolid addition. Giant reed produced the largest biomass in the 50 Mg ha−1 biosolid amendment rate (38 Mg ha−1 dry weight). The high pH and clay content of landfill cap soil, and the low metal concentrations of the biosolid resulted in low heavy metal (copper, zinc, cadmium, and lead) accumulation in leaves of most treatments. The improvement in growth and limited uptake of metal contaminants to plant shoots indicated that biosolid application to landfill clay caps improves the application of phytocapping of old landfill sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abichou, T., Powelson, D., Aitchson, E., Benson, C., & Albright, W. (2005). Water balances in vegetated lysimeters at a Georgia landfill. Journal of Soil and Crop Science Society, 64, 1–8.

    Google Scholar 

  • Albright, W., Benson, C., Gee, G., Abichou, T., Roesler, A., & Rock, S. (2003). Examining the alternatives. Civil Engineering, 73, 70–75 (PNWD-SA-6048).

    Google Scholar 

  • Albright, W., Benson, C., Gee, G., Roesler, A., Abichou, T., Apiwantragoon, P., et al. (2004). Field water balance of landfill final covers. Journal of Environmental Quality, 33(6), 2317–2332.

    Article  CAS  Google Scholar 

  • Albright, W., Benson, C., Gee, G., Abichou, T., Tyler, S., & Rock, S. (2006). Field performance of three compacted clay landfill covers. Vadose Zone Journal, 5(4), 1157.

    Article  Google Scholar 

  • Amacher, M., Henderson, R., Breithaupt, M., Seale, C., & LaBauve, J. (1990). Unbuffered and buffered salt methods for exchangeable cations and effective cation-exchange capacity. Soil Science Society of America Journal, 54(4), 1036–1042.

    Article  CAS  Google Scholar 

  • Angelini, L. G., Ceccarini, L., & Bonari, E. (2005). Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. European Journal of Agronomy, 22(4), 375–389.

    Article  Google Scholar 

  • Ashwath, N., & Venkatraman, K. (2010). Phytocapping: An alternative technique for landfill remediation. International Journal of Environment and Waste Management, 6(1), 51–70.

    CAS  Google Scholar 

  • Blaylock, M. J., David, E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860–865.

    Article  Google Scholar 

  • Bogner, J., & Spokas, K. (1993). Landfill CH<sub>4</sub>: Rates, fates, and role in global carbon cycle. Chemosphere, 26(1–4), 369–386.

    Article  CAS  Google Scholar 

  • Bogner, J., Spokas, K., & Burton, E. (1997). Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole-landfill oxidation experiment, and modeling of Net CH<sub>4</sub> emissions. Environmental Science & Technology, 31(9), 2504–2514. doi:10.1021/es960909a.

    Article  CAS  Google Scholar 

  • Bogner, J., Chanton, J., Blake, D., Abichou, T., & Powelson, D. (2010). Effectiveness of a Florida landfill biocover for reduction of CH<sub>4</sub> and NMHC emissions. Environmental Science & Technology, 44(4), 1197–1203. doi:10.1021/es901796k.

    Article  CAS  Google Scholar 

  • Börjesson, G., Sundh, I., & Svensson, B. (2004). Microbial oxidation of CH<sub>4</sub> at different temperatures in landfill cover soils. FEMS Microbiology Ecology, 48(3), 305–312. doi:10.1016/j.femsec.2004.02.006.

    Article  Google Scholar 

  • Burton, E. D., Phillips, I. R., Hawker, D. W., & Lamb, D. T. (2005). Copper behaviour in a Podosol. 1. pH-dependent sorption-desorption, sorption isotherm analysis, and aqueous speciation modelling. Australian Journal of Soil Research, 43(4), 491–501. doi:10.1071/sr04117.

    Article  CAS  Google Scholar 

  • Cabral, A. R., Moreira, J. F. V., & Jugnia, L. B. (2010). Biocover performance of landfill methane oxidation: Experimental results. Journal of Environmental Engineering, 136(8), 785–793. doi:10.1061/(asce)ee.1943-7870.0000182.

    Article  CAS  Google Scholar 

  • Christou, M., Mardikis, M., & Alexopoulou, E. (2001). Research on the effect of irrigation and nitrogen upon growth and yields of Arundo donax L. in Greece. Aspects of Applied Biology, 65, 47–56.

    Google Scholar 

  • Dever, S., Swarbrick, G., & Stuetz, R. (2007). Passive drainage and biofiltration of landfill gas: Australian field trial. Waste Management, 27(2), 277–286.

    Article  CAS  Google Scholar 

  • Einola, J., Kettunen, R., & Rintala, J. (2007). Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biology and Biochemistry, 39(5), 1156–1164. doi:10.1016/j.soilbio.2006.12.022.

    Article  CAS  Google Scholar 

  • Einola, J., Sormunen, K., Lensu, A., Leiskallio, A., Ettala, M., & Rintala, J. (2009). Methane oxidation at a surface-sealed boreal landfill. Waste Management, 29(7), 2105–2120. doi:10.1016/j.wasman.2009.01.007.

    Article  CAS  Google Scholar 

  • Ettala, M. O. (1988). Short-rotation tree plantations at sanitary landfills. Waste Management & Research, 6(3), 291–302.

    Article  Google Scholar 

  • Ettala, M. O., Yrjonen, K. M., & Rossi, E. J. (1988). Vegetation coverage at sanitary landfills in Finland. Waste Management & Research, 6(3), 281–289.

    Article  Google Scholar 

  • GHD. (2006). Report for Coleman Road Landfill Groundwater Monitoring Data Review October 2006. Nerang: GHD.

    Google Scholar 

  • Ghosh, P., Dayal, D., Mandal, K., Wanjari, R., & Hati, K. (2003). Optimization of fertilizer schedules in fallow and groundnut-based cropping systems and an assessment of system sustainability. Field Crops Research, 80(2), 83–98.

    Article  Google Scholar 

  • Gilman, E., Leone, I., & Flower, F. (1982). Influence of soil gas contamination on tree root growth. Plant and Soil, 65(1), 3–10.

    Article  Google Scholar 

  • Hilger, H., & Humer, M. (2003). Biotic landfill cover treatments for mitigating methane emissions. Environmental Monitoring and Assessment, 84(1–2), 71–84. doi:10.1023/a:1022878830252.

    Article  CAS  Google Scholar 

  • Huber-Humer, M., Röder, S., & Lechner, P. (2009). Approaches to assess biocover performance on landfills. Waste Management, 29(7), 2092–2104. doi:10.1016/j.wasman.2009.02.001.

    Article  CAS  Google Scholar 

  • Hutchings, T. R., Moffat, A. J., & Kemp, R. A. (2001). Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site. Waste Management & Research, 19(3), 194–200.

    Article  CAS  Google Scholar 

  • Jackson, M. B. (1985). Ethylene and responses of plants to soil waterlogging and submergence. Annual Review of Plant Physiology, 36(1), 145–174.

    Article  CAS  Google Scholar 

  • Jarrell, W., & Virginia, R. (1990). Soil cation accumulation in a mesquite woodland: Sustained production and long-term estimates of water use and nitrogen fixation. Journal of Arid Environments, 18(1), 51–58.

    Google Scholar 

  • Kirkham, M. B., Redelfs, M. S., Stone, L. R., & Kanemasu, E. T. (1985). Comparison of water status and evapotranspiration of six row crops. Field Crops Research, 10, 257–268. doi:10.1016/0378-4290(85)90032-2.

    Article  Google Scholar 

  • Korfiatis, G. P., & Demetracopoulos, A. C. (1986). Flow characteristics of landfill leachate collection systems and liners. Journal of Environmental Engineering, 112(3), 538–550.

    Article  CAS  Google Scholar 

  • Kos, B., Greman, H., & Lestan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil and Environment, 49(12), 548–553.

    CAS  Google Scholar 

  • Krishnamurti, G. S. R., & Naidu, R. (2002). Solid-solution speciation and phytoavailability of copper and zinc in soils. Environmental Science & Technology, 36(12), 2645–2651.

    Article  CAS  Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science & Technology, 29(5), 1232–1238.

    Article  CAS  Google Scholar 

  • Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197–209.

    Article  Google Scholar 

  • Lamb, D., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171(1–3), 1150–1158. doi:10.1016/j.jhazmat.2009.06.124.

    Article  CAS  Google Scholar 

  • Lamb, D., Venkatraman, K., Bolan, N., Ashwath, N., Choppala, G., & Naidu, R. (2011). Phytocapping: An alternative technology for the sustainable management of landfill sites. Critical Reviews in Environmental Science and Technology (in press).

  • Lawlor, A. J., & Tipping, E. (2003). Metals in bulk deposition and surface waters at two upland locations in northern England. Environmental Pollution, 121(2), 153–167.

    Article  CAS  Google Scholar 

  • Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25(4), 335–361.

    Article  Google Scholar 

  • Madejon, P., Murillo, J., Maranon, T., Cabrera, F., & Soriano, M. (2003). Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill. The Science of the Total Environment, 307(1–3), 239–257.

    Article  CAS  Google Scholar 

  • Mandal, K., & Sinha, A. (2004). Nutrient management effects on light interception, photosynthesis, growth, dry matter production and yield of Indian mustard (Brassica juncea). Journal of Agronomy and Crop Science, 190(2), 119–129.

    Article  CAS  Google Scholar 

  • Maurice, C., Ettala, M., & Lagerkvist, A. (1999). Effects of leachate irrigation on landfill vegetation and subsequent methane emissions. Water, Air, and Soil Pollution, 113(1–4), 203–216. doi:10.1023/a:1005069503677.

    Article  CAS  Google Scholar 

  • Mavrogianopoulos, G., Vogli, V., & Kyritsis, S. (2002). Use of wastewater as a nutrient solution in a closed gravel hydroponic culture of giant reed (Arundo donax). Bioresource Technology, 82(2), 103–107.

    Article  CAS  Google Scholar 

  • McBride, M. (2003). Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Advances in Environmental Research, 8(1), 5–19.

    Article  CAS  Google Scholar 

  • Miller, W., & Miller, D. (1987). A micro pipette method for soil mechanical analysis. Communications in Soil and Plant Science, 18, 1–15.

    Article  CAS  Google Scholar 

  • Moffat, A. J., & Houston, T. J. (1991). Tree establishment and growth at Pitsea landfill site, Essex, U.K. Waste Management & Research, 9(1), 35–46. doi:10.1016/0734-242X(91)90085-L.

    Google Scholar 

  • Murtaza, G., Haynes, R. J., Naidu, R., Belyaeva, O. N., Kim, K. R., Lamb, D. T., et al. (2011). Natural attenuation of Zn, Cu, Pb and Cd in three biosolids-amended soils of contrasting pH measured using rhizon pore water samplers. Water, Air, & Soil Pollution, 221, 351–363.

    Article  CAS  Google Scholar 

  • Naidu, R., & Bolan, N. S. (2008). Contaminant chemistry in soils: Key concepts and bioavailability. In R. Naidu (Ed.), Chemical bioavailability in terrestrial environment (pp. 9–38). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • NEPC. (1999). Schedule B(5) guideline on ecological risk assessment. Canberra: Australian Government.

    Google Scholar 

  • Nixon, D. J., Stephens, W., Tyrrel, S. F., & Brierley, E. D. R. (2001). The potential for short rotation energy forestry on restored landfill caps. Bioresource Technology, 77(3), 237–245. doi:10.1016/S0960-8524(00)00081-X.

    Article  CAS  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3), 549–574. doi:10.1016/j.jhazmat.2010.09.082.

    Article  CAS  Google Scholar 

  • Rayment, G., & Higginson, F. (1992). Australian laboratory handbook of soil and water chemical methods. Port Melbourne: Inkata Press Pty Ltd.

    Google Scholar 

  • Rittmann, B. E., Fleming, I. R., & Rowe, R. K. (1996). Leachate chemistry: Its implications for clogging. ASCE, pp. 28–33

  • Ryan, M. G., Bond, B. J., Law, B. E., Hubbard, R. M., Woodruff, D., Cienciala, E., et al. (2000). Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia, 124(4), 553–560.

    Article  Google Scholar 

  • SA EPA. (2009). Environment Protection Authority. Annual Report. Adelaide: EPA S. Australia, Trans.

    Google Scholar 

  • Said-Pullicino, D., Massaccesi, L., Dixon, L., Bol, R., & Gigliotti, G. (2010). Organic matter dynamics in a compost-amended anthropogenic landfill capping-soil. European Journal of Soil Science, 61(1), 35–47.

    Article  Google Scholar 

  • Scheutz, C., & Kjeldsen, P. (2004). Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality, 33(1), 72–79.

    Article  CAS  Google Scholar 

  • Scott, J., Beydoun, D., Amal, R., Low, G., & Cattle, J. (2005). Landfill management, leachate generation, and leach testing of solid wastes in Australia and overseas. Critical Reviews in Environmental Science and Technology, 35(3), 239–332.

    Article  CAS  Google Scholar 

  • Shankar, G., Verma, L. P., & Singh, R. (2002). Effect of integrated nutrient management on field and quality of Indian mustard (Brassica juncea) and properties of soil. Indian Journal of Agriculture Science, 72, 551–552.

    Google Scholar 

  • Shu, W., Ye, Z., Lan, C., Zhang, Z., & Wong, M. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120(2), 445–453.

    Article  CAS  Google Scholar 

  • Stern, J. C., Chanton, J., Abichou, T., Powelson, D., Yuan, L., Escoriza, S., et al. (2007). Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Management, 27(9), 1248–1258. doi:10.1016/j.wasman.2006.07.018.

    Article  CAS  Google Scholar 

  • Suarez, D. (1980). Relation between pHc and sodium adsorption ratio (SAR) and an alternative method of estimating SAR of soil or drainage waters1. Soil Science Society of America Journal, 45(3), 469.

    Article  Google Scholar 

  • Tsetimi, G. O., & Okieimen, F. E. (2011). Chelate-assisted phytoextraction of metals from chromated copper arsenate (CCA) contaminated soil. Journal of Environmental Chemistry and Ecotoxicology, 3(8), 214–224.

    CAS  Google Scholar 

  • US EPA (2010). Sewage sludge (biosolids) http://water.epa.gov/polwaste/wastewater/treatment/biosolids/index.cfm. Accessed 26 Aug 2011.

  • Venkatraman, K., & Ashwath, N. (2009). Phytocapping: Importance of tree selection and soil thickness. Water, Air, & Soil Pollution: Focus, 9(5), 421–430.

    Article  Google Scholar 

  • VicEPA. (2000). Environmental guidelines for reducing greenhouse gas emissions from landfills and wastewater treatment facilities. Victoria: EPA Victoria, Trans.

    Google Scholar 

  • Walia, M., & Goyal, S. (2010). Effect of heavy metal contaminated sewage sludge on soil microbiological properties and growth of Indian mustard. Archives of Agronomy and Soil Science, 56(5), 563–574.

    Article  CAS  Google Scholar 

  • Wample, R. L., & Reid, D. M. (1975). Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower (Helianthus annuus L.). Planta, 127(3), 263–270.

    Article  Google Scholar 

  • Wang, D., Li, H., Wei, Z., Wang, X., & Hu, F. (2006). Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Biology and Fertility of Soils, 43(1), 120–123.

    Article  Google Scholar 

  • Waugh, W., Karstens, M., Sheader, L., Benson, C., Albright, W., & Mushovic, P. (2008). Monitoring the performance of an alternative landfill cover at the Monticello,Utah, uranium mill tailings disposal site. Paper presented at the Waste Management 2008 Conference, Phoenix, February 24–28 2008

  • Xu, X., Rudolph, V., & Greenfield, P. F. (1999). Australian urban landfills: Management and economics. Waste Management & Research, 17, 171–180.

    Article  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment, 368(2–3), 456–464.

    CAS  Google Scholar 

  • Zar, G. (1999). Biostatistical analysis (4th ed.). London: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Kwon-Rae Kim of the National Academy of Agricultural Science, Republic of Korea for his contribution towards the establishment of the experimental plots. Financial support from the Cooperative Research Center for Contamination Assessment and Remediation of the Environment (CRC CARE) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dane T. Lamb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, D.T., Heading, S., Bolan, N. et al. Use of Biosolids for Phytocapping of Landfill Soil. Water Air Soil Pollut 223, 2695–2705 (2012). https://doi.org/10.1007/s11270-011-1060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1060-x

Keywords

Navigation