Skip to main content
Log in

Changes in the Abundance of Vascular Plants under the Impact of Industrial Air Pollution: A Meta-analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We applied a meta-analytic approach to improve an understanding of the effects of pollution on the primary productivity of terrestrial ecosystems. We identified 73 data sources reporting changes in the abundance of vascular plants (measured as the percentage of ground cover, biomass per unit area, canopy closure and stem basal area) around 75 polluters located in 18 countries (137 effect sizes). The overall effect was negative but varied among the vegetation layers and types of polluters. The strongest detrimental impact on productivity was due to non-ferrous smelters. The abundance of trees was decreased around both acidifying and alkalifying polluters, whereas the abundance of shrubs and field-layer vegetation decreased only near acidifying polluters. Overall, a decline of vegetation was observed in boreal and temperate forests but not in treeless biomes (deserts, tundra or grasslands). The magnitude of the detrimental effects on trees increased with the duration of the polluters’ impact around acidifying polluters but decreased around alkalifying polluters. Adverse effects on the field layer became more severe with increasing community productivity; in combination with the conclusions of previous meta-analyses, this result indicates that diverse and highly productive communities are likely to be the most susceptible to pollution impacts. In general, the pollution effects on the abundance of vascular plants were less detrimental than the effects on their growth and diversity, indicating that primary productivity in polluted ecosystems is maintained by the preferential growth of several pollution-tolerant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexeyev, V. A., Andreyeva, E. N., Gorshkov, V. V., Druzina, V. D., Menshikova, G. P., Chertov, O. G., et al. (1986). The impact of emission of coal electric power station upon waterlogged north taiga pine forests. Botanicheskij Zhurnal (Botanical Journal, St.Petersburg), 71, 665–672 (in Russian).

  • Armentano, T. V., & Bennett, J. P. (1992). Air pollution effects on the diversity and structure of communities. In J. R. Backer & D. T. Tingey (Eds.), Air pollution effects on biodiversity (pp. 159–176). New York: Van Nostrand Reinhold.

    Chapter  Google Scholar 

  • Beckett, P. J. (1995). Lichens: Sensitive indicators of improving air quality. In J. M. Gunn (Ed.), Restoration and recovery of an industrial region. Progress in restoring the smelter-damaged landscape near Sudbury, Canada (pp. 81–91). New York: Springer.

  • Bradshaw, A. D., & McNeilly, T. (1981). Evolution and pollution. London: Edward Arnold.

    Google Scholar 

  • Carrier, J. G., & Krippl, E. (1990). Comprehensive study of European forests assesses damage and economic losses from air pollution. Environmental Conservation, 17, 365–366.

    Article  Google Scholar 

  • Chernenkova, T. V. (2002). Response of forest vegetation to industrial pollution. Moscow: Nauka (in Russian).

    Google Scholar 

  • Clements, W. H., & Newman, M. C. (2002). Community ecotoxicology. New York: Wiley.

    Book  Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Derome, J., & Lindroos, A. J. (1998). Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu–Ni smelter, SW Finland. Environmental Pollution, 99, 225–232.

    Article  CAS  Google Scholar 

  • Feng, Z. W., Miao, H., Zhang, F. Z., & Huang, Y. Z. (2002). Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China. Journal of Environmental Sciences-China, 14, 227–233.

    Google Scholar 

  • Freedman, B., & Hutchinson, T. C. (1980). Long-term effects of smelter pollution at Sudbury, Ontario, on forest community composition. Canadian Journal of Botany, 58, 2123–2140.

    Article  Google Scholar 

  • Freedman, B. (1989). Environmental ecology. New York: Academic.

    Google Scholar 

  • Gaudet, C. L., & Keddy, P. A. (1995). Competitive performance and species distribution in shoreline plant communities—A comparative approach. Ecology, 76, 280–291.

    Article  Google Scholar 

  • Gordon, A. G., & Gorham, E. (1963). Ecological aspects of air pollution from an iron-sintering plant at Wawa, Ontario. Canadian Journal of Botany, 41, 1063–1078.

    Article  CAS  Google Scholar 

  • Gurevitch, J., & Hedges, L. V. (2001). Meta-analysis. Combining the results of independent experiments. In S. M. Schneider & J. Gurevitch (Eds.), Design and analysis of ecological experiments (pp. 347–369). Oxford: Oxford University Press.

  • Haselhoff, E., & Lindau, G. (1903). Die Beschädigung der Vegetation durch Rauch. Handbuch zur Erkennung und Beurteilung von Rauchschäden. Leipzig: Gebrüder Borntraeger.

    Book  Google Scholar 

  • Holland, R. (1888). Air pollution as affecting plant life. Manchester and Salford noxious vapours abatement association lectures on air pollution. Manchester: Noxious Vapours Abatement Association.

    Google Scholar 

  • Kaźmierszakowa, R. (1987). Degradation of pine forest Vaccinio myrtilli-Pinetum vegetation under the influence of zink and lead smelter. Zakład Ochrony Przyrody i Zasobow Naturalnych Polskiej Akademii Nauk. Studia Naturae - Seria A, 31, 29–75.

    Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2003). Impact of industrial polluters on terrestrial ecosystems: A research synthesis. In J. O. Honkanen & P. S. Koponen (Eds.), Sixth Finnish conference of environmental sciences: Proceedings (pp. 72–75). Joensuu: Finnish Society for Environmental Sciences & University of Joensuu.

    Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2007). Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Reviews in Environmental Science and BioTechnology, 6, 231–259.

    Article  CAS  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2009). Research, publication, and dissemination biases in observational studies of pollution impact on terrestrial biota. In K. Vakkilainen & V. Pukkila (Eds.), Proceedings of FCES-09 Finnish conference of environmental science, 14–15 May 2009, Lahti, Finland (pp. 23–26). Lahti: Finnish Society for Environmental Sciences & University of Lahti.

  • Kozlov, M. V., & Zvereva, E. L. (2011). A second life for old data: Global patterns in pollution ecology revealed from published observational studies. Environmental Pollution, 159, 1067–1075.

    Article  CAS  Google Scholar 

  • Kozlov, M. V., Zvereva, E. L., & Zverev, V. E. (2009). Impacts of point polluters on terrestrial biota: comparative analysis of 18 contaminated areas. Dordrecht: Springer.

    Book  Google Scholar 

  • Liira, J., Sepp, T., & Parrest, O. (2007). The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. Forest Ecology and Management, 250, 34–46.

    Article  Google Scholar 

  • Linzon, S. (1986). Effects of gaseous pollutants on forests in eastern North America. Water, Air, and Soil Pollution, 31, 537–550.

    Article  CAS  Google Scholar 

  • Liu, H., Heckman, J. R., & Murphy, J. A. (1996). Screening fine fescues for aluminium tolerance. Journal of Plant Nutrition, 19, 677–688.

    Article  CAS  Google Scholar 

  • Lukina, N. V., & Nikonov, V. V. (1999). Pollution-induced changes in soils subjected to intense air pollution. In V. V. Nikonov & G. N. Koptsik (Eds.), Acidic deposition and forest soils (pp. 79–126). Apatity: Kola Science Centre (in Russian).

  • Macnair, M. R. (1997). The evolution of plants in metal-contaminated environments. In R. Bijlsma & V. Loeschchke (Eds.), Environmental stress, adaptation and evolution (pp. 2–24). Basel: Birkhäuser.

    Google Scholar 

  • Malinowski, D. P., Zuo, H., Belesky, D. P., & Alloush, G. A. (2004). Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant and Soil, 267, 1–12.

    Google Scholar 

  • Møller, A. P., & Jennions, M. D. (2001). Testing and adjusting for publication bias. Trends in Ecology & Evolution, 16, 580–586.

    Article  Google Scholar 

  • Odum, E. P. (1985). Trends expected in stressed ecosystems. BioScience, 35, 419–422.

    Article  Google Scholar 

  • Rapport, D. J., Regier, H. A., & Hutchinson, T. C. (1985). Ecosystem behavior under stress. American Naturalist, 125, 617–640.

    Article  Google Scholar 

  • Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (2000). MetaWin: statistical software for meta-analysis, version 2.0. Sunderland: Sinauer.

  • Ruotsalainen, A. L., & Kozlov, M. V. (2006). Fungi and air pollution: is there a general pattern? In D. Rhodes (Ed.), New topics in environmental research (pp. 57–103). Hauppauge: Nova.

    Google Scholar 

  • Salemaa, M., & Uotila, T. (2001). Seed bank composition and seedling survival in forest soil polluted with heavy metals. Basic and Applied Ecology, 2, 251–263.

    Article  CAS  Google Scholar 

  • Salemaa, M., Vanha-Majamaa, I., & Derome, J. (2001). Understorey vegetation along a heavy-metal pollution gradient in SW Finland. Environmental Pollution, 112, 339–350.

    Article  CAS  Google Scholar 

  • SAS Institute (2009). SAS/Stat. User's guide, version 9.2. Cary: SAS Institute.

  • Stoklasa, J. (1923). Die Beschädigungen der Vegetation durch Rauchgase und Fabriksexhalationen. Berlin: Urban & Schwarzenberg.

    Google Scholar 

  • Sujetovienė, G., & Stakėnas, V. (2007). Changes in understorey vegetation of Scots pine stands under the decreased impact of acidifying and eutrophying pollutants. Baltic Forestry, 13, 190–196.

    Google Scholar 

  • Tarankov, V. I., Golov, V. I., Kolmakov, P. V., Tatarinov, S. B., Shemetova, N. S., Kulagin, Ju. Z., et al. (1981). On the pollution-induced dynamics of forest vegetation. In V. I. Tarankov & A. N. Prilutskij (Eds.), Ecology of Mongolian oak in Far East (pp. 67–79). Vladivostok: Institute of Biology and Soil Sciences (in Russian).

  • Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455–1474.

    Google Scholar 

  • Treshow, M. (1984). Air pollution and plant life. New York: Wiley.

    Google Scholar 

  • Wang, Y. F., Yu, S. X., & Wang, J. (2007). Biomass-dependent susceptibility to drought in experimental grassland communities. Ecology Letters, 10, 401–410.

    Article  Google Scholar 

  • Wood, C. W., & Nash, T. N. I. (1976). Copper smelter effluent effects on Sonoran desert vegetation. Ecology, 57, 1311–1316.

    Article  CAS  Google Scholar 

  • Woodward, S. (2003). Biomes of Earth: Terrestrial, aquatic, and human-dominated. London: Greenwood.

    Google Scholar 

  • Woodwell, G. M. (1970). Effects of pollution on structure and physiology of ecosystems. Science, 168, 429–433.

    Article  CAS  Google Scholar 

  • Zeid, I. M. (2001). Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum, 44, 111–115.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., & Kozlov, M. V. (2010). Responses of terrestrial arthropods to air pollution: a meta-analysis. Environmental Science and Pollution Research, 17, 297–311.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., & Kozlov, M. V. (2011). Impacts of industrial polluters on bryophytes: a meta-analysis of observational studies. Water, Air, and Soil Pollution, 218, 573–586.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., Toivonen, E., & Kozlov, M. V. (2008). Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Global Ecology and Biogeography, 17, 305–319.

    Article  Google Scholar 

  • Zvereva, E. L., Roitto, M., & Kozlov, M. V. (2010). Growth and reproduction of vascular plants in polluted environments: a synthesis of existing knowledge. Environmental Reviews, 18, 355–367.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Maj and Tor Nessling Foundation, the Turku University Foundation, the Academy of Finland (project numbers 122133, 124152, 209219, 211734 and 215598) and by the University of Turku strategic research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena L. Zvereva.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 132 kb)

Online Resource 2 (PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvereva, E.L., Kozlov, M.V. Changes in the Abundance of Vascular Plants under the Impact of Industrial Air Pollution: A Meta-analysis. Water Air Soil Pollut 223, 2589–2599 (2012). https://doi.org/10.1007/s11270-011-1050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1050-z

Keywords

Navigation