Skip to main content
Log in

Penicillium chrysogenum: Phenol Degradation Abilities and Kinetic Model

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phenol is a typical contaminant of the environment generated by many industries. Several fungi had been reported to degrade phenol as the only source of carbon and energy, but many of them are not useful to apply in soil bioremediation process. In this work, we study the dynamics of phenol degradation by a Penicillium chrysogenum, isolated from soil. Degradation of phenol was studied at room temperature and resting mycelium conditions. High specific degradation rates were obtained. Inhibition was observed on the specific growth rate (30 mg l1) and the degradation rate (200 mg l−1). Experimental results were fitted to several models during exponential phase, with the Andrews-Haldane model given the best fit. Dynamic mass balance equations for biomass and phenol during the exponential and stationary growth phases were solved and compared very satisfactorily to experimental outcomes. P. chrysogenum degrades phenol completely during the exponential and stationary growth phases. The results obtained are relevant for its practical applications in soil decontamination processes. Model predictions were satisfactory. This is the first work which describes a kinetic model for phenol biodegradation using a filamentous fungus considering both, exponential and stationary phases, and the first one in which a Penicillium isolate is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarry, S. E., Solomon, B. O., & Layokun, S. K. (2008). Kinetics of batch microbial degradation of phenols by indigenous binary mixed culture of Pseudomonas aeruginosa and Pseudomonas fluorescence. African Journal of Biotechnology, 7, 2417–2423.

    CAS  Google Scholar 

  • Alexieva, Z., Yemendzhiev, H., & Zlateva, P. (2010). Cresols utilization by Trametes versicolor and substrate interactions in the mixture with phenol. Biodegradation, 21, 625–635.

    Article  CAS  Google Scholar 

  • APHA: (1998). Standard Methods for the Examination of Water and Wastewater. Washington DC, USA. American Public Health Association/American water works Association/Water environment federation.

  • Arutchelvan, V., Kanakasabai, V., Elangovan, R., Nagarajan, S., & Muralikrishnan, V. (2006). Kinetics of high strength phenol degradation using Bacillus brevis. Journal of Hazardous Materials, 129, 216–222.

    Article  CAS  Google Scholar 

  • Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic mixed culture. Biochemical Engineering Journal, 46, 205–209.

    Article  CAS  Google Scholar 

  • Blanch, H. W., & Clark, D. S. (1996). Biochemical Engineering. New York: Marcel Dekker Inc.

    Google Scholar 

  • Chang, Y. H., Li, C. T., Chang, M. C., & Shieh, W. K. (1998). Batch phenol degradation by Candida tropicalis and its fusant. Biotechnology and Bioengineering, 60, 391–395.

    Article  CAS  Google Scholar 

  • Chung, T. P., Tseng, H. Y., & Juang, R. S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem. (Amsterdam, Neth), 38, 1497–1507.

    CAS  Google Scholar 

  • Fava, F., Armenante, P. M., & Kafkewitz, D. (1995). Aerobic degradation and dechlorination of 2–chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Letters in Applied Microbiology, 21, 307–312.

    Article  CAS  Google Scholar 

  • Fogler, S. H. (2006). Non elementary reaction kinetics. Elements of Chemical reaction Engineering (pp. 393–426). New Delhi: Prentice-Hall.

    Google Scholar 

  • Hofrichter, M., Günther, T., & Fritsche, W. (1992). Metabolism of phenol, chloro- and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation, 3, 415–421.

    Google Scholar 

  • Janke, D., & Fritsche, W. (1981). Regulation of phenol degradation in Pseudomonas putida. Zeitschrift f. Atlg. Mikrobiol, 21, 295–303.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wen, J., Bai, J., Jia, X., & Hu, Z. (2007). Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. Journal of Hazardous Materials, 147, 672–676.

    Article  CAS  Google Scholar 

  • Kibret, M., Somitsch, W., & Robra, K.-H. (2000). Characterization of a phenol degrading mixed population by enzyme assay. Water Research, 34, 1127–1134.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, S., & Kumar, S. (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151–159.

    Article  CAS  Google Scholar 

  • Kιlιç, N. K., Karacakaya, P., Duygu, E., & Dönmez, G. (2011). Biodegradation of phenol by Synechocystis sp. in media including triacontanol hormone. Water and Environment Journal. doi:10.1111/j.1747-6593.2011.00267.x.

  • Leitâo, A. L. (2009). Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6, 1393–1417.

    Article  Google Scholar 

  • Leitão, A. L., Duarte, M. P., & Oliveira, J. S. (2007). Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. International Biodeterioration & Biodegradation, 59, 220–225.

    Article  Google Scholar 

  • Leontievsky, A. A., Myasoedova, N. M., Baskunov, B. P., Evans, C. S., & Golovleva, L. A. (2000). Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation, 11, 331–340.

    Article  CAS  Google Scholar 

  • Marr, J., Kremer, S., Sterner, O., & Anke, H. (1989). Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation, 7, 165–171.

    Article  Google Scholar 

  • Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239.

    Article  CAS  Google Scholar 

  • Pirt, S. J. (1975). Principles of Microbial and Cell Cultivation. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Pirt, S. J., & Righelato, R. C. (1967). Effect of growth rate on the synthesis of Penicillin by Penicillium chrysogenum in batch and chemostat cultures. Applied Microbiology, 15, 1284–1290.

    CAS  Google Scholar 

  • Prpich, G. P., & Daugulis, A. J. (2005). Enhanced biodegradation of phenol by a microbial consortium in a solid–liquid two-phase partitioning bioreactor. Biodegradation, 16, 329–339.

    Article  CAS  Google Scholar 

  • Ruiz-Ordaz, N., Ruiz-Lagunez, J. C., Castañón-González, J. H., Hernández-Manzano, E., Cristiani-Urbina, E., & Galíndez-Mayer, J. (2001). Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column. Revista Latinoamericana de Microbiología, 43, 19–25.

    CAS  Google Scholar 

  • Samson, R. A., Seifert, K. A., Kuijpers, A. F. A., Houbraken, J. A. M. P., & Frisvad, J. C. (2004). Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences studies in mycology 49, 175–200.

  • Santos, V. L., & Linardi, V. R. (2004). Biodegradation of phenol by a filamentous fungi isolated from industrial effluents: identification and degradation potential. Process Biochem. (Amsterdam, Neth.), 39, 1001–1006.

    CAS  Google Scholar 

  • Scow, K. M., Li, D., Manilal, V. B., & Alexander, M. (1990). Mineralization of organic compounds at low concentrations by filamentous fungi. Mycological Research, 94, 793–798.

    Article  CAS  Google Scholar 

  • Sgountzos, I. N., Pavlou, S., Paraskeva, C. A., & Payatakes, A. C. (2006). Growth kinetics of Pseudomonas fluorescens in sand beds during biodegradation of phenol. Biochemical Engineering Journal, 30, 164–173.

    Article  CAS  Google Scholar 

  • Singh, R. K., Kumar, S., Kumar, S., & Kumar, A. (2008). Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochemical Engineering Journal, 40, 293–303.

    Article  CAS  Google Scholar 

  • Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., & Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme and Microbial Technology, 39, 1036–1041.

    Article  CAS  Google Scholar 

  • van Bodegom, P. (2007). Microbial maintenance: a critical review on its quantification. Microbial Ecology, 53, 513–523.

    Article  Google Scholar 

  • vanGulik, W. M., Antoniewicz, M. R., deLaat, W. T., Vinke, J. L., & Heijnen, J. J. (2001). Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnology and Bioengineering, 72, 185–193.

    Article  CAS  Google Scholar 

  • Wang, S.-J., & Loh, K.-C. (1999). Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbial Technology, 25, 177–184.

    Article  Google Scholar 

  • Wang, L., Li, Y., Yu, P., Xie, Z., Luo, Y., & Lin, Y. (2010). Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. Journal of Hazardous Materials, 183, 366–371.

    Article  CAS  Google Scholar 

  • Wolski, E. A., Barrera, V., Castellari, C., & González, J.F. (2010). “Biodegradation of phenol by a soil fungus: Identification and degradation potential”, in BMS-IMA (ed.), The 9th International Mycological Congress (IMC9: the Biology of Fungi), Elsevier, Endiburgh, Scotland, UK, pp. 2–101.

  • Yan, J., Jianping, W., Hongmei, L., Suliang, Y., & Zongding, H. (2005). The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochemical Engineering Journal, 24, 243–247.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Universidad Nacional de Mar del Plata, the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), and MAPFRE foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika A. Wolski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolski, E.A., Durruty, I., Haure, P.M. et al. Penicillium chrysogenum: Phenol Degradation Abilities and Kinetic Model. Water Air Soil Pollut 223, 2323–2332 (2012). https://doi.org/10.1007/s11270-011-1026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1026-z

Keywords

Navigation