Skip to main content
Log in

Hydrochemical and Sediment Biomarker Evidence of the Impact of Organic Matter Biodegradation on Arsenic Mobilization in Shallow Aquifers of Datong Basin, China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biomarker and hydrochemical characteristics of geogenic arsenic-contaminated aquifers at Datong Basin, northern China, were analyzed to better understand the impact of organic matter (OM) biodegradation on arsenic enrichment in groundwater. The hydrochemical characteristics of high arsenic groundwater from the Datong Basin indicate that arsenic mobilization and iron and manganese oxide/hydroxide reduction were controlled by biodegradation of OM. The elevated value of alkalinity produced by microbial oxidation of OM is another important factor for arsenic mobilization via competitive sorption. Bulk geochemistry of the sediments shows that arsenic has close correlation with iron and manganese, indicating iron- and manganese-bearing minerals could be the major pools for arsenic. Results of biomarker analysis reveal that all the sediments contained natural petroleum-sourced hydrocarbons which may have undergone biodegradation, as suggested by the carbon preference index, C29 sterane, and the distribution pattern of hopanes. The presence of unresolved complex mixtures in all samples also indicates the natural petroleum origin of hydrocarbons and the effect of biodegradation. At some depths (5.4–11.8, 31–33.2, and 40–48.4 m below the land surface), the samples have low n-alkane content and no odd-over-even predominance, suggesting that indigenous microbes within the aquifer can preferentially remove the petroleum-sourced n-alkanes. The bioavailability of organic carbon is very important to promote the microbially mediated reductive dissolution of iron oxides/hydroxides and subsequent arsenic release from aquifer sediment into groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar H.M & Akai, K. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19, 215–230

    Google Scholar 

  • Albro, P. W. (1976). Bacterial waxes. In P. E. Kolattukudy (Ed.), Chemistry biochemistry of natural waxes (pp. 419–445). Amsterdam: Elsevier.

    Google Scholar 

  • Appelo, C. A. J., van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36, 3096–3103.

    Article  CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, T. C., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35, 2621–2626.

    Article  CAS  Google Scholar 

  • Brassell, S. C., & Eglinton, G. (1980). Environmental chemistry and interdisciplinary subject. Natural and pollutant organic compounds in contemporary aquatic environments. In J. Albaiges (Ed.), Analytical Techniques in Environmental Chemistry. Oxford: Pergamon.

    Google Scholar 

  • Bray, E. E., & Evans, E. D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2–15.

    Article  CAS  Google Scholar 

  • Charlet, L., & Polya, D. A. (2006). Arsenic hazard in shallow reducing groundwaters in southern Asia. Elements, 2, 91–96.

    Article  Google Scholar 

  • Cummings, D. E., Caccavo, F., Jr., Fendorf, S., & Rosenzweig, R. F. (1999). Arsenic mobilisation by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science and Technology, 33, 723–729.

    Article  CAS  Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassel, S. C., & Eglinton, G. (1978). Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216–222.

    Article  CAS  Google Scholar 

  • Duan, M., Xie, Z., Wang, Y., & Xie, X. (2009). Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source. Environmental Geology, 57(5), 997–1003.

    Article  CAS  Google Scholar 

  • Farooq, S. H., Chandrasekharamb, D., Berner, Z., Norra, S., & Stuben, D. (2010). Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta. Water Research, 44, 5575–5588.

    Article  CAS  Google Scholar 

  • Farrington, J. W., & Tripp, B. W. (1977). Hydrocarbons in western North Atlantic surface sediments. Geochimica et Cosmochimica Acta, 41, 1627–1641.

    Article  CAS  Google Scholar 

  • Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Dong, H. L., Onstott, T. C., Hinman, N. W., et al. (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62, 3239–3257.

    Article  CAS  Google Scholar 

  • Frysinger, G. S., Gaines, R. B., Xu, L., & Reddy, C. M. (2003). Resolving the unresolved complex mixture in petroleum contaminated sediments. Environmental Science and Technology, 37, 1653–1662.

    Article  CAS  Google Scholar 

  • Gault, A. G., Islam, F. S., Polya, D. A., Charnock, J. M., Boothman, C., Chatterjee, D., et al. (2005). Microcosm depth profiles of arsenic release in a shallow aquifer, West Bengal. Mineralogical Magazine, 69, 855–863.

    Article  CAS  Google Scholar 

  • Guo, H. M., & Wang, Y. X. (2005). Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. Journal of Geochemical Exploration, 87, 109–120.

    Article  CAS  Google Scholar 

  • Guo, H. M., Wang, Y. X., Shpeizer, G. M., & Yan, S. L. (2003). Natural occurrence of arsenic in shallow groundwater, Shanyin, Datong Basin, China. J Environ Sci Health Part A, 38, 2565–2580.

    Article  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, A. M., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Hedges, J. I., & Prahl, F. G. (1993). Early diagenesis: Consequences for applications of molecular biomarkers. In M. H. Engel & S. A. Macko (Eds.), Organic geochemistry: Principles and applications (pp. 237–253). New York: Plenum.

    Google Scholar 

  • Horneman, A., van Geen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., et al. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68, 3459–3473.

    Article  CAS  Google Scholar 

  • Hunkeler, D., Höhener, P., Bernasconi, S., & Zeyer, J. (1999). Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: Assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances. Journal of Contaminant Hydrology, 37(3–4), 201–223.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., et al. (2004). Role of metal-reducing bacteria in arsenic release from Bengal Delta sediments. Nature, 430, 68–71.

    Article  CAS  Google Scholar 

  • Islam, F. S., Boothman, C., Gault, A. G., Polya, D. A., & Lloyd, J. R. (2005). Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineralogical Magazine, 69, 865–875.

    Article  CAS  Google Scholar 

  • Kao, C. M., Chien, H. Y., Surampalli, R. Y., Chien, C. C., & Chen, C. Y. (2010). Assessing of natural attenuation and intrinsic bioremediation rates at a petroleum-hydrocarbon spill site: Laboratory and field studies. Journal of Environmental Engineering, 136(1), 54–67.

    Article  CAS  Google Scholar 

  • Kirk, M. F., Holm, T. R., Park, J., Jin, Q., Sanford, R. A., Fouke, B. W., et al. (2004). Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology, 32, 953–956.

    Article  Google Scholar 

  • Lackovic, J.A., Nikolaidis, N.P., Dobbs, G.M. (1999). Redox-sensitive mobility of arsenic in proximity to a municipal landfill. Conference Proceedings, 31st Mid-Atlantic Industrial and Hazardous Waste Conference, Storrs, Connecticut. pp. 451–459.

  • Li, J., Wang, Z., Cheng, X., Wang, S., Jia, Q., Han, L., et al. (2005). Investigation of the epidemiology of endemic arsenism in Ying County of Shanxi Province and the content relationship between water fluoride and water arsenic in aquatic environment. Chinese Journal of Endemiology, 24, 183–185. In Chinese, with English abstract.

    CAS  Google Scholar 

  • Lloyd, J. R., & Oremland, R. S. (2006). Microbial transformation of arsenic in the environmental: From soda lakes to aquifers. Elements, 2, 85–90.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J., & Lonergan, D. J. (1991). Enzymatic versus nonenzymatic mechanisms for Fe III reduction in aquatic sediments. Environmental Science and Technology, 25, 1062–1067.

    Article  CAS  Google Scholar 

  • Lowers, H. A., Breit, G. N., Foster, A. L., Whitney, J., Yount, J., Uddin, M. N., et al. (2007). Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71, 2699–2717.

    Article  CAS  Google Scholar 

  • Matsunaga, T., Karametaxas, G., von Gunten, H. R., & Lichtner, P. C. (1993). Redox chemistry of iron and manganese minerals in river-recharged aquifers: A model interpretation of a column experiment. Geochimica et Cosmochimica Acta, 57, 1691–1704.

    Article  CAS  Google Scholar 

  • Mayo, M.J., Hon, R., Brandon, W.C., Ford, R. (2003). Arsenic in groundwater at landfill sites in northern central Massachusetts. Abstract Papers of American Chemical Society, pp. U594–U594.

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • Nicholas, D. R., Ramamoorthy, S., Palace, V., Spring, S., Moore, J. N., & Rosenzweig, R. F. (2003). Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation, 14, 123–137.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. H., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. H. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.

    Article  CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2005). Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13, 45–49.

    Article  CAS  Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide, vol. 2, biomarkers in petroleum exploration and earth history (2nd ed.). UK: Cambridge University Press.

    Google Scholar 

  • Philp, R. P. (1985). Fossil fuel biomarkers: Applications and spectra. Amsterdam: Elsevier.

    Google Scholar 

  • Pinel-Raffaitin, P., Le Hecho, I., Amouroux, D., & Potin-Gautier, M. (2007). Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogasses. Environmental Science and Technology, 41, 4536–4541.

    Article  CAS  Google Scholar 

  • Polya, D. A., Gault, A. G., Diebe, N., Feldmann, P., Rosenboom, J. W., Gilligan, E., et al. (2005). Arsenic hazard in shallow Cambodian groundwaters. Mineralogical Magazine, 69, 807–823.

    Article  CAS  Google Scholar 

  • Postma, D., Larsen, F., Minh Hue, N. T., Duc, M. T., Viet, P. H., Nhan, P. Q., et al. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71, 5054–5071.

    Article  CAS  Google Scholar 

  • Quicksall, A. N., Bostick, B. C., & Sampson, M. L. (2008). Linking organic matter deposition and iron mineral transformations to groundwater arsenic levels in the Mekong delta, Cambodia. Applied Geochemistry, 23, 3088–3098.

    Article  CAS  Google Scholar 

  • Rowland, H. A. L., Polya, D. A., Lloyd, J. R., & Pancost, R. D. (2006). Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Organic Geochemistry, 37, 1101–1114.

    Article  CAS  Google Scholar 

  • Rowland, H. A. L., Pederick, R. L., Polya, D. A., Pancost, R. A., van Dongen, B. E., Gault, A. G., et al. (2007). Control of organic matter type of microbially mediated release of arsenic from contrasting shallow aquifer sediments from Cambodia. Geobiology, 5, 281–292.

    Article  CAS  Google Scholar 

  • Rowland, H. A. L., Gault, A. G., Lythgoe, P. R., & Polya, D. A. (2008). Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia. Applied Geochemistry, 23, 3029–3046.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1999). A review of biomarker compounds as source indicators and tracers for air pollution. Environmental Science and Pollution Research, 6, 159–169.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • Stone, A. T., & Morgan, J. J. (1984). Reduction of manganese III and manganese IV oxides by organics: 2. Survey of the reactivity of organics. Environmental Science and Technology, 18, 617–624.

    Article  CAS  Google Scholar 

  • Taraknath, P., Mukherjee, P. K., Sengupra, S., Battacharyya, A. K., & Shome, S. (2002). Arsenic pollution in groundwater of West Bengal, India: An insight into the problem by subsurface sediment analysis. Gondwana Research, 5, 501–512.

    Article  Google Scholar 

  • van Dongen, B. E., Rowland, H. A. L., Gault, A. G., Polya, D. A., Bryant, C., & Pancost, R. D. (2008). Hopane, sterane and n-alkane distributions in shallow sediments hosting high arsenic groundwaters in Cambodia. Applied Geochemistry, 23, 3047–3058.

    Article  Google Scholar 

  • van Geen, A., Zheng, Y., Stute, M., & Ahmed, K. M. (2003). Comment on “Arsenic mobility and groundwater extraction in Bangladesh” (II). Science, 300, 584c.

    Article  Google Scholar 

  • van Geen, A., Rose, J., Thoral, S., Garnier, J. M., Zheng, Y., & Bottero, Y. Y. (2004). Decoupling of As and Fe release to Bangladesh ground water under reducing conditions. Part II: Evidence from sediment incubations. Geochimica et Cosmochimica Acta, 68, 3475–3486.

    Article  Google Scholar 

  • Volkman, J. K., Holdsworth, D. G., Neill, G. P., & Bavor, H. J., Jr. (1992). Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Science of the Total Environment, 112, 203–219.

    Article  CAS  Google Scholar 

  • Wang, Y. X., & Shpeyzer, G. (2000). Hydrogeochemistry of mineral waters from rift systems on the East Asia continent: Case studies in Shanxi and Baikal. Beijing: China Environmental Science Press. In Chinese, with English Abstract.

    Google Scholar 

  • Wang, Y. X., Guo, H. M., Yan, S. L., Wang, R. F., & Li, Y. L. (2004). Geochemical evolution of shallow groundwater systems and their vulnerability to contaminants: A case study at Datong Basin, Shanxi province, China. Beijing: Science Press. In Chinese, with English Abstract.

    Google Scholar 

  • Xie, X. J., Wang, Y. X., Su, C. L., Liu, H. Q., Duan, M. Y., & Xie, Z. M. (2008). Arsenic mobilization in shallow aquifers of Datong Basin: Hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98, 107–115.

    Article  CAS  Google Scholar 

  • Xie, X., Ellis, A., Wang, Y., Xie, Z., Duan, M., & Su, C. (2009a). Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Science of the Total Environment, 407(12), 3823–3835.

    Article  CAS  Google Scholar 

  • Xie, X. J., Wang, Y. X., & Duan, M. Y. (2009b). Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China. Environmental Geochemistry and Health, 31, 493–502.

    Article  CAS  Google Scholar 

  • Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34, 4747–4753.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (NSFC-40830748 and 40902071) and the Ministry of Education of China (111 project, grant no. B08030). We would like to thank the editor and two anonymous reviewers for the constructive suggestions and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, X., Wang, Y. & Su, C. Hydrochemical and Sediment Biomarker Evidence of the Impact of Organic Matter Biodegradation on Arsenic Mobilization in Shallow Aquifers of Datong Basin, China. Water Air Soil Pollut 223, 483–498 (2012). https://doi.org/10.1007/s11270-011-0875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0875-9

Keywords

Navigation