Skip to main content
Log in

Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The protected area “Bohemian Switzerland National Park” with its characteristic sandstone landscape was influenced by the long-term air pollution and acidic deposition within the area known as Black Triangle (located where Germany, Poland, and the Czech Republic meet, is one of the Europe’s most polluted areas). The local Upper Cretaceous sandstone is subhorizontally stratified, fine- to coarse-grained, quartz dominated, with low content of clay minerals. One of the significant negative effects of the intensive acidic deposition on sandstone outcrops has been identified as chemical (salt) weathering, i.e., a process when the porous sandstone rock is except of chemical influence attacked also by force of crystallization of growing salts crystals. Anions NO 3 together with SO 2−4 and cation NH +4 were the most abundant solutes in bulk precipitation samples. Current (2002 to 2009) bulk deposition fluxes of SO 2−4 determined at three sites directly in the National Park indicate decline from 23 to 16 kg−1 ha−1 year−1. Infiltration of bulk precipitation solutes into the sandstone mediates the weathering processes. Natural outflow of sandstone pore-water (sandstone percolates) can be sampled only during certain days of year when the sandstone becomes saturated with water and percolates drip out on small number of sites from roofs of overhangs. Under usual conditions percolation water evaporates at the sandstone surface producing salt efflorescences—the typical example is Pravčická brána Arch locality. The average pH of the dripping sandstone percolates was 3.76. Concentration of SO 2−4 and Al in sandstone percolates reached up to 46 and 10 mg L−1. The concentration of Al in percolates has been 160-fold greater the one in the precipitation samples suggesting the sandstone as a source. The water O and H isotopic composition of percolates has been virtually identical to precipitation samples, indicating thus relatively short residence time of the solutions within the sandstone pore-spaces. Evaporation experiments with bulk precipitation and percolate samples proved possible origin of some Ca in bulk precipitation and the sandstone rock as the source of Al and possibly of K for the salt efflorescence identified on Rock Arch body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamovic, J., & Kidston, J. (2007). Sandstones and their attributes. In H. Härtel, V. Cílek, T. Herben, A. Jackson, & R. Williams (Eds.), Sandstone landscapes (1st ed., pp. 13–24). Prague: Academia.

    Google Scholar 

  • Adamovič, J., Mikuláš, R., & Cílek, V. (2010). Atlas of sandstone rock cities of Czech and Slovak Republic—geology and geomorphology (in Czech) (p. 460). Prague: Academia.

    Google Scholar 

  • Anonymous. (2009). Statistical environmental yearbook of the Czech Republic. Prague: Ministry of the Environment of the CR, Czech Statistical Office.

    Google Scholar 

  • Beyer, O. (1911). Alaun und Gips als Mineralneubildungen und als Ursachen der chemischen Verwitterung in den Quadersandstein des sächsischen Kreidegebiets. Zeitschrift der Deutschen Geologischen Gesellschaft (Journal of the German Geological Society), 63, 429–467.

    Google Scholar 

  • Blanck, V. E., Seifert, A., & Giesecke, F. (1932). Über eigenartig gefärbte Ausblühungen und Inkrustationen im Elbsandsteingebirge. Chemie der Erde, 7, 35–50.

    CAS  Google Scholar 

  • Breiter, K. (1976). Occurrence of sulphates on Upper Cretaceous thick-bedded sandstones in north Bohemia (in Czech). Sborník Severočeského Musea Ser Natur, 8, 99–107.

    Google Scholar 

  • Buzek, F., Cerný, J., & Srámek, J. (1991). Sulphur isotope studies of atmospheric S and corrosion of monuments in Prague. Czechoslovakia. In H. R. Krouse & V. A. Grinenko (Eds.), Stable isotopes, natural and anthropogenic sulphur in the environment (pp. 399–405). Chichester: Wiley.

    Google Scholar 

  • CHMI, (2009). database of Czech Hydrometeorological Institute, data on station Ústí nad Labem-Kočkov. Available at: http://www.chmi.cz/meteo/opss/stanice.php?ukazatel=ustinlab. Accessed 20 June 2010.

  • Cílek, V. (1998). Physical-chemical processes of pseudocarst origin (in Czech). In: V. Cílek & J. Kopecký (eds), Pískovcový fenomén: Klima, život a reliéf . Knihovna České speleologické spol., svazek 32. Praha—Broumov. pp. 134–153

  • Cílek, V., & Langrová, A. (1994). Rock crusts and Salt weathering in Labské pískovce Protected area (in Czech). Ochrana přírody, 49(8), 227–231.

    Google Scholar 

  • Cílek, V., Adamovič, J., & Vařilová, Z. (2006). Pravčická brána Arch and development of sandstone rock arches (in Czech). Minulosti Českého Švýcarska III., Sborník příspěvků historické conference, Krásná Lípa. pp. 5–19

  • Drever, J. I., & Stillings, L. L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 120, 167–181.

    Article  CAS  Google Scholar 

  • Fottová, D. (1995). Regional evaluation of mass element fluxes: GEOMON network of small catchments. Environmental Monitoring and Assessment, 34, 215–221.

    Article  Google Scholar 

  • Fottová, D. (2003). Trends in sulphur and nitrogen deposition fluxes in the Geomon network, Czech Republic, between 1994–2002. Water, Air, and Soil Pollution, 150, 73–87.

    Article  Google Scholar 

  • Frolka, J., Hubatka, F., & Kuda, F. (2009). Geological structure of Pravčická brána Arch - Dipole electromagnetic profiling - technical report (In Czech) (p. 12). Brno: KOLEJ CONSULT & servis.

    Google Scholar 

  • Glöckner, P. (1995). Fyzickogeografické a geologické poměry okresu Děčín (Geography and geology of the Děčín district) (In Czech). Vlastivěda okresu děčínského, Ser. Příroda, Děčín. pp. 1–191.

  • Goudie, A., & Viles, H. A. (1997). Salt weathering hazards. Chichester: Wiley.

    Google Scholar 

  • Härtel, H., & Marková, I. (2005). Phytogeographic importance of sandstone landscapes. Ferrantia-Travaux scientifiques de Musee national d’historie naurelle, Luxembourgh, 44, 103–105.

    Google Scholar 

  • Härtel, H., Sádlo, J., Swierkosz, K., & Marková, I. (2007). Phytogeography of sandstone areas in Bohemian Cretaceous Basin (Czech Republic/Germany/Poland). In H. Härtel, V. Cílek, T. Herben, A. Jackson, & R. Williams (Eds.), Sandstone landscapes (pp. 177–189). Prague: Academia.

    Google Scholar 

  • Härtel, H., Šteflová, D., & Drozd, J. (2008). Management plan on the Bohemian Switzerland National Park, 2009–2016 (in Czech). Krásná Lípa. p. 217.

  • He, L. M., Zelazny, L. W., Baligar, V. C., Ritchey, K. D., & Martens, D. C. (1997). Ionic strength effects on sulfate and phosphate adsorption on g-alumina and kaolinite: triple layer model. Soil Science Society of America Journal, 61, 784–793.

    Article  CAS  Google Scholar 

  • Hostýnek, J. (2009). Climatological study. The study of climate conditions for Tokáň site. CHMI Plzeň. p. 6

  • Hruška, J., Moldan, F., & Krám, P. (2002). Recovery from acidification in Central Europe—observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic. Environmental Pollution, 120, 261–274.

    Article  Google Scholar 

  • Hůnová, I., Šantroch, J., & Ostatnická, J. (2004). Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmospheric Environment, 38, 887–898.

    Article  Google Scholar 

  • Inskeep, W. P. (1989). Adsorption of sulfate by kaolinite and amorphous iron oxide in the presence of the organic ligands. Journal of Environmental Quality, 18, 379–385.

    Article  CAS  Google Scholar 

  • JCPDS (1999). Structural Database of Joint Committee of Powder Diffraction International Centre for Diffraction Data, Newton, Pennsylvania, USA.

  • Kopáček, J., & Veselý, J. (2005). Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmospheric Environment, 39, 2179–2188.

    Article  Google Scholar 

  • Lange, C. A., Matschullat, J., Zimmermann, F., Sterzik, G., & Wienhaus, O. (2003). Fog frequency and chemical composition of fog water—a relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany. Atmospheric Environment, 37, 3731–3739.

    Article  CAS  Google Scholar 

  • LfUG (2008). Jahresbericht zur Immissionssituation 1998, Sachsisches Landesamt fur Umwelt und Geologie (ed.) Materialien zur Luftreinhaltung. p. 72

  • Libiseller, C. (2006). MULTMK/PARTMK, a program for the computation of multivariate and partial Mann-Kendall test. Available at: http://www2.ekon.slu.se/claudia/Manual.pdf. Accessed 1 December 2010.

  • Melounová, L. (2006). Salt weathering of Upper Cretaceous sandstones of the Wing Wall cliffs (National Park Bohemian Switzerland) (In Czech). Unpublished MSc.thesis, Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University Prague. p. 48

  • Navrátil, T., Rohovec, J., Amirbahman, A., Norton, S., & Fernandez, I. (2009). Amorphous aluminum hydroxide control on sulfate and phosphate in sediment-solution systems. Water, Air, and Soil Pollution, 201(1–4), 87–98.

    Article  Google Scholar 

  • Novák, M., Jačková, I., & Přechová, E. (2001). Temporal trends in the isotope signature of air-borne sulfur in Central Europe. Environmental Science & Technology, 35, 255–260.

    Article  Google Scholar 

  • Přikryl, R. (2004). Comparison of mineralogical composition of crusts formed on natural stone in the natural environment and on monuments. In A. S. Goudie & J. Kalvoda (Eds.), Geomorphological variations (pp. 143–156). Prague: P3K.

    Google Scholar 

  • Přikryl, R., Melounová, L., Vařilová, Z., & Weishauptová, Z. (2007). Spatial relationships of salt distribution and related physical changes of underlying rocks on naturally weathered sandstone exposures (Bohemian Switzerland National Park, Czech Republic). Environmental Geology, 52, 409–420.

    Article  Google Scholar 

  • Rast, H. (1958). Geologischer Führer durch das Elbsandsteingebirge—Bergakademie Freiberg, Freiberg. p. 224

  • Riebe, H., Härtel, H., Bauer, P., & Benda, P. (1999). Natural conditions of Bohemian-Saxonian Switzerland. Nationalpark Sächsische Schweiz. Bad Schandau, 3, 20–57.

    Google Scholar 

  • Schweigstillová, J., Přikryl, R., & Novotná, M. (2009). Isotopic composition of salt efflorescence from the sandstone castellated rocks of the Bohemian Cretaceous Basin (Czech Republic). Environmental Geology, 58, 217–225.

    Article  Google Scholar 

  • Seifert, A. (1939). Kieselrinden im Elbsandsteingebirge. Zeitschrift der Deutschen Geologischen Gesellschaft (Journal of the German Geological Society), 91(2), 97–108.

    Google Scholar 

  • Siedel, H., & Klemm, W. (2001). Sulphate salt efflorescence at the surface of sandstone monuments and at the sandstone bedrock in outcrops—natural or anthropogenic reasons? Geologica Saxonica, 46(47), 203–208.

    Google Scholar 

  • Smith, B. J. (1996). Scale problems in the interpretation of urban stone decay. In B. J. Smith & P. A. Warke (Eds.), Processes of urban stone decay (pp. 3–18). London: Donhead Publishing Ltd.

    Google Scholar 

  • Soukupová, J., Hradil, D., & Přikryl, R. (2002). Chemical weathering of sandstone matrix - controls and case studies. In R. Přikryl & H.A. Viles (Eds.) Understanding and managing stone decay. Karolinum Press, Charles University Prague. pp. 263–271

  • Tolasz, R., Míková, T.,Valeriánová, A., & Voženílek, V. (2007). Climate Atlas of the Czech Republic. Czech Hydrometeorological Institute, Prague and University Olomouc. p. 255.

  • Turkington, A. V., & Phillips, J. D. (2004). Cavernous weathering, dynamical instability and self-organization. Earth Surf Process Landforms, 29, 665–675.

    Article  Google Scholar 

  • Turkington, A. V., & Paradise, T. R. (2005). Sandstone weathering: a century of research and innovation. Geomorph, 67, 229–253.

    Article  Google Scholar 

  • Vach, M., Fišák, J., Navrátil, T., Fottová, D., Špičková, J., & Skřivan, P. (2004). The precipitation chemistry over central Bohemia, sources and pathways. Studia Geophysica et Geodaetica, 48, 791–809.

    Article  Google Scholar 

  • Valečka, J. (1989). Sedimentology, stratigraphy and cyclicity of Jizera Formation (Middle-Upper Turonian) in the Děčín area (N Bohemia) (In Czech). Bulletin of the Czech Geological Survey, 64(2), 77–91.

    Google Scholar 

  • Valečka, J. (1997). Bohemian Switzerland, geological and natural map 1:25 000. Prague: Czech Geological Survey.

    Google Scholar 

  • Vařilová, Z. (2002). A review of selected sandstone weathering forms in Bohemian Switzerland National park, Czech Republic. In: R. Přikryl & H.A. Viles (Eds.) Understanding and managing stone decay. Charles University, Karolinum Press, Prague

  • Vařilová, Z., & Zvelebil, J. (2007). Catastrophic and episodic events in sandstone landscapes: slope movements and weathering. In H. Härtel, V. Cílek, T. Herben, A. Jackson, & R. Williams (Eds.), Sandstone landscapes (pp. 115–128). Prague: Academia.

    Google Scholar 

  • Vařilová, Z., & Belisová, N. (Eds.). (2010). Pravčická brána rock Arch— the big book about the big arch (In Czech/German) (p. 242). Prague: Academia.

    Google Scholar 

  • Vařilová, Z., Šteflová, D., Härtel, H., Marková, I., Trýzna, M., Mauricová, J., Holešinský, O., Votápek, A., Marek, J., Belisová, N. (2005). Management plan on the on National Natural Monument Pravčice Rock Arch, 2005–2014 (in Czech), Krásná Lípa, +14 append. p. 22

  • Vařilová, Z., Přikryl, R., Cílek, V. (in press). Pravčice Rock Arch (Bohemian Switzerland National Park, Czech Republic) deterioration due to natural and anthropogenic weathering. In: Environmental Earth Sciences, special issue. Springer, Amsterdam. p. 18.

  • Vesecký, A., et al. (1958). Climate atlas of Czechoslovakia republic (in Czech). Prague: ÚSGK.

    Google Scholar 

  • Wang, X., Li, Q., Hu, H., Zhang, T., & Zhou, Y. J. (2005). Dissolution of kaolinite induced by citric, oxalic, and malic acids. Colloid Interface Scence, 290, 481–488.

    Article  CAS  Google Scholar 

  • Winkler, E. M. (1997). Stone in architecture. Properties, durability (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Young, W., Wray, A. L., & Young, A. R. M. (2009). Chemical weathering. In Sandstone landforms (pp. 113–141). New York: Cambridge University Press.

    Google Scholar 

  • Zimmermann, F., Lux, H., Maenhaut, W., Matschullat, J., Plessow, K., Reuter, F., et al. (2003). A review of pollution and atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmospheric Environment, 37, 671–691.

    Article  CAS  Google Scholar 

  • Zimmermann, F., Matschullat, J., Bruggemann, E., Plessow, K., & Wienhaus, O. (2006). Temporal and elevation-related variability in precipitation chemistry from 1993 to 2002, Eastern Erzgebirge, Germany. Water, Air, and Soil Pollution, 170(1–4), 123–141.

    Article  CAS  Google Scholar 

  • Zvelebil, J., Cílek, V., & Stemberk, J. (2002). Partial results of monitoring of stability deterioration on Pravčice Rock Arch, NW Bohemia. In: R. Přikryl & H.A. Viles (Eds.) Understanding and managing stone decay. Charles University, Karolinum Press, Prague

Download references

Acknowledgments

The financial support for this research has been provided from Bohemian Switzerland NP Administration, the project EHP Norway “Comprehensive monitoring of the state of natural environment of the Bohemian Switzerland NP” and Institute of Geology ASCR, v.v.i. research program No. AV0Z30130516. We thank Steve Norton and Karel Žák for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Navrátil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vařilová, Z., Navrátil, T. & Dobešová, I. Recent Atmospheric Deposition and its Effects on Sandstone Cliffs in Bohemian Switzerland National Park, Czech Republic. Water Air Soil Pollut 220, 117–130 (2011). https://doi.org/10.1007/s11270-010-0739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0739-8

Keywords

Navigation