Skip to main content
Log in

Cupric Reductase Activity in Copper-Resistant Amycolatopsis tucumanensis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Amycolatopsis tucumanensis, a recently recognized novel species showed remarkable copper resistance as well as efficient Specific Cupric Reductase Activity (SRACu) in both, copper adapted and non-adapted cells, under different temperatures of incubation. Its copper resistance strength was highlighted against other metal-resistant actinobacteria (Streptomyces sp. AB5A) and sensitive strains (Amycolatopsis eurytherma and Streptomyces coelicolor). Pre-adapted cells of A. tucumanensis displayed values of SRACu, on average, 65% higher than those obtained from non-adapted cells. In addition, preadaptation of A. tucumanensis improved the rate of Cu(II) reduction which was approximately, two-, seven- and ninefold higher than pre-adapted cells from Streptomyces sp. AB5A, A. eurytherma and S. coelicolor, respectively. A. tucumanensis showed the highest levels of SRACu at all temperatures and also the highest copper resistance profile, suggesting that these two abilities may be in close relationship. This ostensible versatility, related to the temperature, of adapted cells from A. tucumanensis might support the application of this strain under different bioremediation conditions. To our knowledge this is the first time that cupric reductase activity was demonstrated within the genus Amycolatopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, A., & Edwards, C. (1989). Effects of metals on a range of Streptomyces species. Applied and Environmental Microbiology, 55, 2030–2035.

    CAS  Google Scholar 

  • Abbas, A., & Edwards, C. (1990). Effects of metals on Streptomyces coelicolor growth and actinorhodin production. Applied and Environmental Microbiology, 56, 675–680.

    CAS  Google Scholar 

  • Abou-Shanab, R. A. I., van Berkum, P., & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68, 360–367.

    Article  CAS  Google Scholar 

  • Albarracín, V., Amoroso, M., & Abate, C. (2005). Isolation and characterization of indigenous copper resistant actinomycete strains. Chemie Erde Geochemistry, 65(S1), 145–156.

    Article  Google Scholar 

  • Albarracín, V., Winik, B., Kothe, E., Amoroso, M., & Abate, C. (2008a). Copper bioaccumulation by the actinobacterium Amycolatopsis sp. ABO. Journal of Basic Microbiology, 48, 323–330.

    Article  Google Scholar 

  • Albarracín, V., Avila, A., Amoroso, M., & Abate, C. (2008b). Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiology Letters, 288, 141–148.

    Article  Google Scholar 

  • Albarracín, V., Alonso-Vega, P., Trujillo, M., Amoroso, M., & Abate, C. (2010a). Amycolatopsis tucumanensis sp. nov., a novel copper resistant actinobacterium isolated from polluted sediments. International Journal of Systematic and Evolutionary Microbiology, 60, 397–401.

    Article  Google Scholar 

  • Albarracín, V., Amoroso, M., & Abate, C. (2010b). Bioaugmentation of copper polluted soil by Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere, 79, 131–137.

    Article  Google Scholar 

  • Amoroso, M., Castro, G., Carlino, F., Romero, N., & Hill, R. (1998). Screening of heavy metal-tolerant actinomycetes isolated from the Salí River. The Journal of General and Applied Microbiology, 44, 129–132.

    Article  CAS  Google Scholar 

  • Amoroso, M., Castro, G., Duran, A., Peraud, O., Oliver, G., & Hill, R. (2001). Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. Journal of Industrial Microbiology. Biotechnology, 24, 210–215.

    Google Scholar 

  • Anwar, M., Iqbal, M., Qamar, M., Rehman, M., & Khalid, A. (2000). Technical communication: determination of cuprous ions in bacterial leachates and for environmental monitoring. World Journal of Microbiology & Biotechnology, 16, 135–138.

    Article  CAS  Google Scholar 

  • Bafana, A., Krishnamurthi, K., Patil, M., & Chakrabarti, T. (2010). Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. Journal of Hazardous Materials, 177, 481–486.

    Article  CAS  Google Scholar 

  • Crichton, R., & Pierre, J. (2001). Old iron, young copper: from Mars to Venus. Biometals, 14, 99–112.

    Article  CAS  Google Scholar 

  • Finney, L., & O’Halloran, T. (2003). Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science, 300, 931–936.

    Article  CAS  Google Scholar 

  • Gold, B., Deng, H., Bryk, R., Vargas, D., Eliezer, D., Roberts, J., et al. (2008). Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nature Chemical Biology, 4, 609–616.

    Article  CAS  Google Scholar 

  • Hassett, R., & Kosman, D. (1995). Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. The Journal of Biological Chemistry, 270, 128–134.

    Article  CAS  Google Scholar 

  • Hill, K., Hassett, R., Kosman, D., & Merchant, S. (1996). Regulated copper uptake in Chlamydomonas reinhardtií in response to copper availability. Plant Physiology, 112, 697–704.

    Article  CAS  Google Scholar 

  • Kwon, K., & Yeom, S. (2009). Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess and Biosystems Engineering, 32, 435–442.

    Article  CAS  Google Scholar 

  • Liu, T., Ramesh, A., Ma, Z., Ward, S., Zhang, L., George, G., et al. (2007). CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nature Chemical Biology, 3, 60–68.

    Article  CAS  Google Scholar 

  • Lun Chiang, M., & Chun Chou, C. (2009). Survival of Vibrio parahaemolyticus under environmental stresses as influenced by growth phase and pre-adaptation treatment. Food Microbiology, 26, 391–395.

    Article  Google Scholar 

  • Magnani, D., & Solioz, M. (2007). How bacteria handle copper. Molecular Microbiology of Heavy Metals. doi:10.1007/7171_2006_081.

    Google Scholar 

  • Pesce, S., & Wunderlin, D. (2004). Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. International Biodeterioration and Biodegradation, 54, 255–260.

    Article  CAS  Google Scholar 

  • Petersen, C., & Moller, L. (2000). Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene, 261, 289–298.

    Article  CAS  Google Scholar 

  • Polti, M., Amoroso, M., & Abate, C. (2007). Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere, 67, 660–667.

    Article  CAS  Google Scholar 

  • Rapisarda, V., Chehin, R., De Las, R., Rodriguez-Montelongo, L., Farias, R., & Massa, E. (2002). Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. Archieves of Biochemestry Biophysics., 405, 87–94.

    Article  CAS  Google Scholar 

  • Ravel, J., Amoroso, M., Colwell, R., & Hill, R. (1998). Mercury resistant actinomycetes from Chesapeake Bay. FEMS Microbiology Letter, 162, 177–184.

    Article  CAS  Google Scholar 

  • Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27, 197–213.

    Article  CAS  Google Scholar 

  • Richards, J. W., Krumholz, G. D., Chval, M. S., & Tisa, L. S. (2002). Heavy metal resistance patterns of Frankia strains. Applied and Environmental Microbiology, 68, 923–927.

    Article  CAS  Google Scholar 

  • Schmidt, A., Haferburg, G., Siñeriz, M., Merten, D., Büchel, G., & Kothe, E. (2005). Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chemie der Erde - Geochemistry, 65, 131–144.

    Article  CAS  Google Scholar 

  • Schmidt, A., Haferburg, G., Schmidt, A., Lischkea, U., Merten, D., Ghergela, F., et al. (2008). Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chemie Erde-Geochemistry, 69(S2), 35–44.

    Google Scholar 

  • Solioz, M., & Stoyanov, J. (2003). Copper homeostasis in Enterococcus hirae. FEMS Microbiology Reviews, 27, 183–195.

    Article  CAS  Google Scholar 

  • Stoyanov, J., Hobman, J., & Brown, N. (2001). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Molecular Microbiology, 39, 502–512.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CIUNT, FONCyT, CONICET, Argentina. J.S.D.C. is supported by a FONCyT doctoral scholarship while V.H.A. and C.M.A. are researchers from the National Research Council in Argentina. The authors gratefully acknowledge the assistance of Mr. Guillermo Borchia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Mauricio Abate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dávila Costa, J.S., Albarracín, V.H. & Abate, C.M. Cupric Reductase Activity in Copper-Resistant Amycolatopsis tucumanensis . Water Air Soil Pollut 216, 527–535 (2011). https://doi.org/10.1007/s11270-010-0550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0550-6

Keywords

Navigation