Skip to main content
Log in

Bathroom Greywater Characterization and Potential Treatments for Reuse

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

With the emerging crisis of water, greywaters represent a significant resource of water if considering recycling for uses not requiring a drinking water quality. Samples of greywaters were taken from a few households. Their characterization led to results similar to those in literature. However, they showed a lack of phosphorus in C/N/P ratio. Nevertheless, it was shown that, in our study, median was more appropriate than mean. The potential treatment steps studied during this work were sand bed filtration, adsorption onto granular activated carbon (GAC), and sanitation by chlorine. The sand bed which was supplied with sequential feedings led to a very good removal of total suspended solids (TSS; and consequently of turbidity) as well as to a 30% COD decrease. However, the organic matter withdrawal was more efficient by adsorption onto GAC. The chlorination of greywaters was efficient to decrease the microbial population. Therefore, following the reclaimed water quality which would be required treatment might imply all steps or just one or two. This kind of low-cost device could thus be implemented for reuse such as irrigation, agricultural need, or urban use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agence Française de Sécurité Sanitaire des Aliments (AFSSA). (2008). Réutilisation des eaux usées traitées pour l’arrosage et l’irrigation. http://www.afssa.fr . Accessed 12 June 2009.

  • Ahmad, A. A., & Hameed, B. H. (2009). Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon. Journal of Hazardous Materials, 172(2–3), 1538–1543.

    Article  CAS  Google Scholar 

  • Al-Jayyousi, O. (2003). Greywater reuse: Towards sustainable water management. Desalination, 156(1–3), 181–192.

    Article  CAS  Google Scholar 

  • Australian capital Territory. Greywater Use: Guidelines for residential properties in Canberra. (2004). Australian Capital Territory. Australia: Canberra.

    Google Scholar 

  • Bansode, R. R., Losso, J. N., Marshall, W. E., Rao, R. M., & Portier, R. J. (2004). Pecanshell based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater. Bioresource Technology, 94(2), 129–135.

    Article  CAS  Google Scholar 

  • Canadian Guidelines for household reclaimed water for use in toilet and urinal flushing. (2007). Draft for consultation. http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/consult/_2007/reclaim-recycle/reclaim-recycle-eng.pdf. Accessed 20 July 2009.

  • Centre d’informations de l’eau. (2004). Les usages domestiques dans le monde. http://www.cieau.com/toutpubl/sommaire/texte/6/contenu/6161.htm. Accessed 28 August 2009.

  • Chabaud, S., Andres, Y., Lakel, A., & Le Cloirec, P. (2006). Bacteria removal in sceptic effluent: Influence of biofilm and protozoa. Water Research, 40, 3109–3114.

    Article  CAS  Google Scholar 

  • Chin, W. H., Roddick, F. A., & Harris, J. L. (2009). Greywater treatment by UVC/H2O2. Water Research, 43(16), 3940–3947.

    Article  CAS  Google Scholar 

  • Decreto 2 maggio. (2006). Norme techniche per il riutilizzo delle acque reflue. Italy: Ministero dell’ambiante della tutela del territorio.

    Google Scholar 

  • Diaper, C., Dixon, A., Butler, D., Fewkes, A., Parsons, S. A., Strathern, M., et al. (2001). Small scale water recycling systems—Risk assessment and modelling. Water Science and Technology, 43, 83–90.

    CAS  Google Scholar 

  • Elmitwalli, T. A., & Otterpohl, R. (2007). Anaerobic biodegradability and treatment of greywater in upflow anaerobic sludge blanket (UASB) reactor. Water Research, 41, 1379–1387.

    Article  CAS  Google Scholar 

  • Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4, 85–104.

    Article  CAS  Google Scholar 

  • Faur-Brasquet, C., Kadirvelu, K., & Le Cloirec, P. (2002). Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon, 40(13), 2387–2392.

    Article  CAS  Google Scholar 

  • Friedler, E., & Hadari, M. (2006). Economic feasibility of on-site greywater reuse in multi-storey buildings. Desalination, 190(1–3), 221–234.

    Article  CAS  Google Scholar 

  • Gilboa, Y., & Friedler, E. (2008). UV-disinfection of RBC-treated light greywater effluent: Kinetics, survival and regrowth of selected microorganisms. Water Research, 42(4), 1043–1050.

    Article  CAS  Google Scholar 

  • Gray, S., & Becker, N. (2002). Contaminant flows in urban residential water systems. Urban water, 4(4), 331–346.

    Article  CAS  Google Scholar 

  • Gross, A., Kaplan, D., & Baker, K. (2007). Removal of chemical and microbiological contaminants from domestic greywater using recycled vertical flow bioreactor (RVFB). Ecological Engineering, 31(2), 107–114.

    Article  Google Scholar 

  • Hightower, M., & Pierce, S. (2008). The energy challenge. Nature, 452(7185), 285–286.

    Article  CAS  Google Scholar 

  • Hourlier, F., Massé, A., Jaouen, P., Lakel, A., Gérente, C., Faur, C., et al. (2010). Formulation of a synthetic greywater as an evaluation tool for wastewater recycling technologies. Environmental Technology, 31(2), 215–223.

    Article  CAS  Google Scholar 

  • Hypes, W., Batten, C., & Wilkins, J. (1975). Processing of combined domestic bath and laundry wastewater for reuse as commode flushing water. NASA technical note TN-D7937. Washington DC: National Aeronautics and Space Administration.

    Google Scholar 

  • Jefferson, B., Laine, A., Parsons, S., Stephenson, T., & Judd, S. (1999). Technologies for domestic wastewater recycling. Urban Water, 1, 285–292.

    Article  CAS  Google Scholar 

  • Jeppesen, B. (1996). Domestic greywater reuse: Australia’s challenge for the future. Desalination, 106(1–3), 311–315.

    CAS  Google Scholar 

  • Kishino, H., Ishida, H., Iwabu, H., & Nakano, I. (1996). Domestic wastewater reuse using a submerged membrane bioreactor. Desalination, 106, 115–119.

    CAS  Google Scholar 

  • Li, F., Whichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. The Science of the Total Environment, 407, 3439–3449.

    Article  CAS  Google Scholar 

  • Lim, Y. N., Shaaban, M. G., & Yin, C. Y. (2009). Treatment of landfill leachate using palm shell-activated carbon column: Axial dispersion modeling and treatment profile. Chemical Engineering Journal, 146(1), 86–89.

    Article  CAS  Google Scholar 

  • Merz, C., Scheumann, R., El Hamouri, B., & Kraume, M. (2007). Membrane bioreactor technology for the treatment of greywater from a sports and leisure club. Desalination, 215, 37–43.

    Article  CAS  Google Scholar 

  • Metcalf and Eddy. (1991). Design of facilities for the treatment and disposal of sludge In: wastewater engineering treatment: disposal and reuse. 3rd ed. USA. McGraw-Hill International Editions, New York, USA.

  • Mohan, D., Singh, K. P., & Singh, V. K. (2008). Wastewater treatment using low cost activated carbon derived from agricultural by-products—A case study. Journal of Hazardous Materials, 152(3), 1045–1053.

    Article  CAS  Google Scholar 

  • Nolde, E. (1999). Greywater reuse systems for toilet flushing in multi-storey buildings—Over ten years experience in Berlin. Urban Water, 1, 275–284.

    Article  CAS  Google Scholar 

  • Oschmann, N., Nghiem, L. D., & Schäfer, A. I. (2005). Fouling mechanisms of submerged ultrafiltration membranes in greywater recycling. Desalination, 179, 215–223.

    Article  CAS  Google Scholar 

  • Palmquist, H., & Hanaeus, J. (2005). Hazardous substances in separately collected grey- and blackwater from ordinary Swedish households. The Science of the Total Environment, 348, 151–163.

    Article  CAS  Google Scholar 

  • Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S. A., Liu, S., et al. (2008). Chemical solutions for greywater recycling. Chemosphere, 71(1), 147–155.

    CAS  Google Scholar 

  • Ramon, G., Green, M., Semiat, R., & Dosoretz, C. (2004). Low strength graywater characterization and treatment by direct membrane filtration. Desalination, 170, 241–250.

    Article  CAS  Google Scholar 

  • Real decreto 1620/2007 de 7 de deciembre por el que se establece el regimen juridico de la reutilisacion de las aguas depuradas, Spain.

  • Salomon, T., & Bedel, S. (2001). La maison des [néga]watts-Le guide malin de l’énergie chez soi. Ed. Mens, France: Terre Vivante.

    Google Scholar 

  • Smith, A. J., Khow, J., Lodge, B., & Bavister, G. (2001). Desalination of poor quality brackish groundwater for non-potable use. Desalination, 139, 207–215.

    Article  CAS  Google Scholar 

  • Sostar-Turk, S., Petrinic, I., & Simonic, M. (2005). Laundry wastewater treatment using coagulation and membrane filtration. Resources, Conservation and Recycling, 44(2), 185–196.

    Article  Google Scholar 

  • Stevik, T. K., Ausland, G., Jenssen, P. D., & Siegrist, R. L. (1999). Removal of E. Coli during intermittent filtration of wastewater effluents as affected by dosing rate. Water Research, 33(9), 2088–2098.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (2004). Guidelines for Water reuse. EPA/625/R-04/108. US. Washington DC: Agency for International Development.

    Google Scholar 

  • World Heatlh Organization (WHO). (2006). Guidelines for the Safe Use of wastewater, excreta and greywater. Vol IV: Excreta and grey water reuse in agriculture. Geneva: World Health Organization.

    Google Scholar 

  • Winward, G. P., Avery, L. M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., et al. (2008). A study of the microbial quality of greywater and an evaluation of treatment technologies for reuse. Ecological Engineering, 32(2), 187–197.

    Article  Google Scholar 

  • Winward, G. P., Avery, L. M., Stephenson, T., & Jefferson, B. (2008). Chlorine disinfection of greywater for reuse: Effect of organics and particles. Water Research, 42, 483–491.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research has been partially realized within the framework of CYCLEAUX program (France), which is a program approved by the Competitiveness cluster EMC2, Direction Générale des Entreprises (DGE) and Région Bretagne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katell Chaillou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaillou, K., Gérente, C., Andrès, Y. et al. Bathroom Greywater Characterization and Potential Treatments for Reuse. Water Air Soil Pollut 215, 31–42 (2011). https://doi.org/10.1007/s11270-010-0454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0454-5

Keywords

Navigation