Skip to main content
Log in

Bioremediation of a Soil Industrially Contaminated by Wood Preservatives—Degradation of Polycyclic Aromatic Hydrocarbons and Monitoring of Coupled Arsenic Translocation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two commercially available aerobic bioremediation methods (Daramend® and BioSan) were utilized to study the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAH) and the effect of the simultaneously present arsenic. The soil was collected at an old wood preservation site, and the initial PAH16-concentration was 46 mg/kg, with mainly high molecular weight congeners. The As concentration was 105 mg/kg with low availability as assessed with sequential extraction. To enhance the availability of PAH, the effect of a nonionic surfactant was evaluated. Degradation of both low and high molecular weight PAH was observed; however, after 30 weeks, the degradation was generally low and no treatment was significantly better than the others. The treatments had, on the other hand, an effect on As remobilization, with increased As concentration in the available fraction after treatment. This may be due to both the microbial activity and the presence of anoxic microsites in the soil. The overall efficiency of the biological treatment was further evaluated using the standardized ecotoxicity test utilizing Vibrio fischeri (Microtox®). The toxicity test demonstrated that the bioremediation led to an increase in toxicity, especially in treatments receiving surfactant. The surfactant implied an increase in contaminant availability but also a decrease in surface tension, which might have contributed to the overall toxicity increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander, M. (1999). Biodegradation and bioremediation. San Diego: Academic.

    Google Scholar 

  • Andersson, E., Rotander, A., von Kronhelm, T., Berggren, A., Ivarsson, P., Hollert, H., et al. (2009). AhR antagonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment. Environmental Science and Pollution Research, 16(5), 521–530.

    Article  CAS  Google Scholar 

  • Antizar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2005). Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Management, 25(3), 281–289.

    Article  CAS  Google Scholar 

  • Ascar, L., Ahumada, I., & Richter, P. (2008). Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere, 72(10), 1548–1552.

    Article  CAS  Google Scholar 

  • Atagana, H. I., Haynes, R. J., & Wallis, F. M. (2003). Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation, 14(4), 297–307.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Mukherjee, A. B., Jacks, G., & Nordqvist, S. (2002). Metal contamination at wood preservation site: characterization and experimental studies on remediation. The Science of the Total Environment, 290(1–3), 165–180.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. The Science of the Total Environment, 379(2–3), 109–120.

    CAS  Google Scholar 

  • Chang, B. V., Shiung, L. C., & Yuan, S. Y. (2002). Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 48(7), 717–724.

    Article  CAS  Google Scholar 

  • Eom, I. C., Rast, C., Veber, A. M., & Vasseur, P. (2007). Ecotoxicity o a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicology and Environmental Safety, 67(2), 190–205.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., Jr. (2002). Environmental chemistry of arsenic. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Fulladosa, E., Murat, J.-C., Martínez, M., & Villaescusa, I. (2005). Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria. Chemosphere, 60(1), 43–48.

    Article  CAS  Google Scholar 

  • Fulladosa, E., Debord, J., Villaescusa, I., Bollinger, J.-C., & Murat, J.-C. (2007). Effect of arsenic compounds on Vibrio fischeri light emission and butyrylcholinesterase activity. Environmental Chemistry Letters, 5(3), 115–119.

    Article  CAS  Google Scholar 

  • Henke, K. R. (2009). Arsenic: Environmental chemistry, health threats and waste treatment. Chichester, U.K.: Wiley.

    Google Scholar 

  • Inskeep, W. P., McDermott, T. R., & Fendorf, S. (2002). Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In J. Frankenberger & T. William (Eds.), Environmental chemistry of arsenic. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71–84.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 45(1–2), 57–88.

    Article  CAS  Google Scholar 

  • Korda, A., Santas, P., Tenente, A., & Santas, R. (1997). Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Applied Microbiology & Biotechnology, 48(6), 677–686.

    Article  CAS  Google Scholar 

  • Lee, J.-U., Lee, S.-W., Chon, H.-T., Kim, K.-W., & Lee, J. S. (2009). Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply. Environment International, 35(3), 469–501.

    Article  Google Scholar 

  • Liebeg, E. W., & Cutright, T. J. (1999). The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH-contaminated soil. International Biodeterioration & Biodegradation, 44(1), 55–64.

    Article  CAS  Google Scholar 

  • Loibner, A. P., Szolar, O. H. J., Braun, R., & Hirmann, D. (2004). Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox®. Environmental Toxicology and Chemistry, 23(3), 557–564.

    Article  CAS  Google Scholar 

  • Lundstedt, S., White, P. A., Lemieux, C. L., Lynes, K. D., Lambert, I. B., Öberg, L., et al. (2007). Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio, 36(6), 475–485.

    Article  CAS  Google Scholar 

  • Mazidji, C. N., Koopman, B., Bitton, G., & Neita, D. (1992). Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environmental Toxicology and Water Chemistry, 7(4), 339–353.

    Article  CAS  Google Scholar 

  • McConkey, B. J., Duxbury, C. L., Dixon, D. G., & Greenberg, B. M. (1997). Toxicity of PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environmental Toxicology and Chemistry, 16(5), 892–899.

    CAS  Google Scholar 

  • Mendonça, E., & Picado, A. (2002). Ecotoxicological monitoring of remediation in a coke oven soil. Environmental Toxicology, 17(1), 74–79.

    Article  Google Scholar 

  • Mohammed, D., Ramsubhag, A., & Beckles, D. M. (2007). An assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes. Water, Air & Soil Pollution, 182(1), 349–356.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Bio/Technology, 5(4), 347–374.

    Article  CAS  Google Scholar 

  • Páez-Espino, D., Tamames, J., de Lorenzo, V., & Cánovas, D. (2009). Microbial responses to environmental arsenic. Biometals, 22(1), 117–130.

    Article  Google Scholar 

  • Paria, S. (2008). Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science, 138(1), 24–58.

    Article  CAS  Google Scholar 

  • Phillips, T. M., Liu, D., Seech, A. G., Lee, H., & Trevors, J. T. (2000). Bioremediation in field box plots of a soil contaminated with wood-preservatives: a comparison of treatment conditions using toxicity testing as a monitoring technique. Water, Air & Soil Pollution, 121(1–4), 173–187.

    Article  CAS  Google Scholar 

  • Potter, C. L., Glaser, J. A., Chang, L., Meier, J. R., Dosani, M. A., & Herrmann, R. F. (1999). Degradation of polynuclear aromatic hydrocarbons under bench-scale compost conditions. Environmental Science & Technology, 33(10), 1717–1725.

    Article  CAS  Google Scholar 

  • Rhine, E. D., Garcia-Dominguez, E., Phelps, C. D., & Young, L. Y. (2005). Environmental microbes can speciate and cycle arsenic. Environmental Science & Technology, 39(24), 9569–9573.

    Article  CAS  Google Scholar 

  • Rhykerd, R. L., Crews, B., McInnes, K. J., & Weaver, R. W. (1999). Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Bioresource Technology, 67(3), 279–285.

    Article  CAS  Google Scholar 

  • Seech, A. G., Marvan, I., & Trevors, J. T. (1994). On-site/ex situ bioremediation of industrial soils containing chlorinated phenols and polycyclic aromatic hydrocarbons. In R. E. Hinchee, A. Leeson, L. Semprini, & S.-K. Ong (Eds.), Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (pp. 451–455). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. New Jersey: John Wiley & Sons Inc.

    Google Scholar 

  • Sherrard, K. B., Marriott, P. J., McCormick, M. J., & Millington, K. (1996). A limitation of the Microtox® test for toxicity measurement of nonionic surfactants. Environmental Toxicology & Chemistry, 15(7), 1034–1037.

    CAS  Google Scholar 

  • Simon, M. A., Bonner, J. S., Page, C. A., Townsend, R. T., Mueller, D. C., Fuller, C. B., et al. (2004). Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from wetland. Ecological Engineering, 22(4–5), 263–277.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Sobisch, T., Hess, H., Niebelschütz, H., & Schmidt, U. (2000). Effect of additives on biodegradation of PAH in soil. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 162(1–3), 1–14.

    Article  CAS  Google Scholar 

  • Straube, W. L., Nestler, C. C., Hansen, L. D., Ringleberg, D., Pritchard, P. H., & Jones-Meehan, J. (2003). Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnologica, 23(2–3), 179–196.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • US-EPA (1996). Grace bioremediation technologies Daramend™ bioremediation technology. EPA/540/R-95/536.

  • US-EPA (1997). Recent developments for in situ treatment for metal contaminated soils. EPA/542/R-97/004.

  • Wang, S., & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management, 90(8), 2367–2376.

    Article  CAS  Google Scholar 

  • Yamamura, S., Yamamoto, N., Ike, M., & Fujita, M. (2005). Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium. Journal of Bioscience and Bioengineering, 100(2), 219–222.

    Article  CAS  Google Scholar 

  • Zheng, Z., & Obbard, J. P. (2002). Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Research, 36(10), 2667–2672.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Knowledge Foundation. Elmer Schöbel and Linda Söderling, Sakab, are especially thanked for their help with the GC/MS. Akzo Nobel, Stenungsund, Sweden, is thanked for providing the surfactant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Elgh-Dalgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elgh-Dalgren, K., Arwidsson, Z., Ribé, V. et al. Bioremediation of a Soil Industrially Contaminated by Wood Preservatives—Degradation of Polycyclic Aromatic Hydrocarbons and Monitoring of Coupled Arsenic Translocation. Water Air Soil Pollut 214, 275–285 (2011). https://doi.org/10.1007/s11270-010-0422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0422-0

Keywords

Navigation