Skip to main content
Log in

Origin of Salinity in Groundwater of Neighboring Villages of the Cerro Prieto Geothermal Field

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The residual brine of the Cerro Prieto Geothermal Field (CPGF) is disposed in an evaporation pond. The seepage of this pond has contaminated the water and agricultural soil around it. The contamination of the groundwater towards the southwest by the evaporation pond, in the direction of the regional flow, has been shown before. Hydrogeochemical modeling (PHREEQCI) and Schoeller and Piper diagrams have been used in this work to show that the chemical composition of the groundwater in villages neighboring CPGF is the product of mixing between irrigation water from the Colorado River and brine from the evaporation pond. The high potassium concentration in the water and the relative increase in concentration of sodium and chlorides along the flow path as well as the hydrogeochemical models for this system explain this mixing process. This work will allow proposing new managing techniques to avoid the presence of the residual brine in the groundwater of agricultural lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar, A. (2006). Update of the Cerro Prieto geological model. GRC Transactions (30), 4–8.

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry groundwater and pollution. Rotterdam: Balkema Press.

    Google Scholar 

  • Ball, J. W., Nordstrom, D. K., & Zachmann, D. W. (1987). WATEQ4F: A personal computer FORTRAN translation of the geochemical model WATEQ2 with revised data base. U. S. Geologycal Survey Open File Report 87-50. Denver E. U. A.

  • Bertani, R. (2005). World Geothermal Power Generation 2001-2005: State of the Art. Proceedings World Geothermal Congress 2005 (CD-ROM).

  • Carreón, C., Ramírez J., Vega, M. (1995). Aplication of Stiff diagram as a geochemistry tool in the geothermal exploration in Mexicali Valley. Hydraulic Engineering in Mexico, (3), 37–46 [In Spanish].

  • CILA (2006). Annual report of activities. Mexico.

  • CNA (2006). Basic concepts of hydrology (1rst Volumen). Handbook of dissemination and outreach on select topics on ground water. Mexicali, B.C. Mexico. [In Spanish].

  • Comisión Nacional del Agua (CNA). (1994). Analysis of saline soils at south of the Cerro Prieto Geothermal Field. Internal report. [In Spanish].

  • Deutsch, W. J. (1997). Groundwater geochemistry. Fundamentals an applications to contamination. NewYork: Lewis Publishers.

    Google Scholar 

  • Elders, W. A., Hoagland, J. R., McDowell, S. D., Cobo, J. M. (1979). Hydrotermal Mineral Zones in the Geothermal Reservoir of Cerro Prieto in proc. Of the first Symp. On the Cerro Prieto Geothermal Field. San Diego. Geothermics, 8, pp 8.

  • Federal Electricity Commission (CFE). (1991). Magazine CFE. Cerro Prieto. Mexicali, Mexico. [In Spanish].

  • Federal Electricity Commission (CFE). (1994). Magazine CFE. Cerro Prieto. Mexicali, Mexico. [In Spanish].

  • Federal Electricity Commission (CFE). (1995). Magazine CFE. Cerro Prieto. Mexicali, Mexico. [In Spanish].

  • Federal Electricity Commission (CFE). (2003). Article Cerro Prieto. Available via dialog. http://www.cfe.gob.mx. [In Spanish].

  • García, F. R. (2001). Effect of evaporation ponds of Cerro Prieto Geothermal Field in the soil near the Mexicali Valley." Msc Thesis. Institute of Agricultural Sciences, UABC. Ej. Nuevo Leon, Mexico. [In spanish].

  • Glenn, E. P., Felger, R. S., Burquez, A., & Turner, D. S. (1992). Cienega de Santa Clara: endangered wetland in the Colorado River Delta, Sonora Mexico. Natural Resources Journal, 32, 817–824.

    Google Scholar 

  • Glenn, E. P., García, J., Tanner, R., Congdon, C., & Luecke, D. (1999). Status of wetlands supported by agricultural drainage water in the Colorado River Delta, Mexico. Hortscience, 34(1), 39–45.

    Google Scholar 

  • Gutiérrez, H., Helio, M. (2000) “28 years of production at Cerro Prieto geothermal field”. World Geothermal Congress, 2000. Kyushu-Tohoku, Japan

  • Hillel, D. (1998). Environmental soil physics. Boston: Academic Press.

    Google Scholar 

  • Kovda, V. A. (1947). Origin of saline soils and their regime II; Traslated from Russian. USDA.

  • Krauskopf, K., & Bird, D. (1995). Introduction to geochemistry. New York: McGrawHill International Editions.

    Google Scholar 

  • Lippmann, M. J., Truesdell, A. H., Halfman-Dooley, S. E., Mañon, M. (1991). A review of the hydrogeologic-geothermal model of Cerro Prieto steam production forecasting. Geothermal Resource Council, Trans, 18.

  • Ocampo, J., De Leon, J., Pelayo, A. (2006). Production drop from scaling of well E–54 at the Cerro Prieto geothermal field. Geothermics, pp. 9–22.

  • Ortega, E. M. (1983). Some theoretical aspects of geochemical, physical-chemical and chemical character involved in the genesis of sodium soil salinity. Mexico: Chapingo Posgraduate College.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User's guide to PHREEQC: a computer program for speciation, batch-reaction, one dimensional transport and inverse geochemical calculations. US Geol Surv Water-Res Invest Report, 99–4259. USA.

  • Plummer, et al. (1976). Wateq4f a fortran IV versión of wateq, a computer program for calculation chemical equilibrium of natural waters. U. S. Gelogical Survey. Water Resources Investigations, 76–13. Reston. E. U. A.

  • Portugal, E., Barragan, R. M., & DeLeon, J. (2005). Effects of artificial and natural recharge on chemical equilibrium in the Cerro Prieto reservoirs, Baja California, Mexico. Journal of Geochemical Exploration, 89, 339–343.

    Article  Google Scholar 

  • Puente, G., Hernández, L. (2005). H2S monitoring and emission control at the Cerro Prieto geothermal field, Mexico. Proceedings World Geothermal Congress 2005, Turkey, 24–29.

  • Pulido, L., Robles, B., Gonzalez, J., Cisneros, O. (2003). Manual identification of soil salinity and cartography yield crops with remote sensors. IMTA, Mexico. [In spanish].

  • Ramirez-Hernández, J. (1997) Estudio de las relaciones hidrogeológicas del acuífero superior del Valle de Mexicali con aguas geotérmicas superficiales. PhD Thesis. Universidad de Alcalá de Henares. España.

  • Ramírez-Hernández, J., & García, G. S. (2004). Chemical evolution of brine disposal of Cerro Prieto geothermal field during its transport toward surrounding soils, Mexico. Environmental Geology, 46:721–726.

    Article  Google Scholar 

  • Roman, C. J. (2000). Colorado River Delta: Impact of the urban development on the agricultural region. Ph Thesis. Instituto de Ciencias Agricolas, UABC. Mexicali, B.C. Mexico. [In Spanish].

  • Sánchez, F. J. (2004). Medidas puntuales de permeabilidad. Universidad de Salamanca. Available via dialog. http://web.usal.es/javisan/hidro). España. [In spanish]. Accesed 12 april 2008.

  • Shainberg, I., & Shalhevet J. (1989). Soil salinity under irrigation. Institute of Soil and Water, Agriculture Research Organization. Israel.

  • Shalhevet, J. (1984). Management of irrigation with brackish water. In I. Shainberg & J. Shalhevet (Eds.), Soil salinity under irrigation (pp. 298–318). New York: Springer Verlag.

    Google Scholar 

  • Truesdell, A. H., & Jones, B. F. (1974). WATEQ, a computer program for calculating chemical equilibria of natural waters. Journal of Research U.S. Geol Survey, 2(2), 233–274.

    CAS  Google Scholar 

  • Truesdell, A. H., Rye, R. O., Pearson, F. J., Jr., Olson, E. R., Nehring, N. L., Whelan, J. F., et al. (1979). Preliminary isotopic studies of fluids from the Cerro Prieto geothermal field. Geothermics, 8, 223–229.

    Article  Google Scholar 

  • Truesdell, A. H., Thompson, J. M., Coplen, T. B., Nehring, N. L., & Janik, C. J. (1981). The origin of the Cerro Prieto geothermal brine. Geothermics, 10, 225–238.

    Article  Google Scholar 

  • Valette, J. N., & Esquer-Patiño, I. (1979) Geochemistry of the surface emissions in the Cerro Prieto Geothermal Field. Second Symposium on the Cerro Prieto Geothermal Field, Baja California Mexico, pp 741–750.

  • Van Der Kamp, P. C. (1973). Holocene continental sedimentation in the Salton basin, California: A reconnaissance. Geological Society of America Bulletin, 84, 827–848.

    Article  Google Scholar 

  • Volke, T. and Velasco, J. A. (2002). Technology for remediation of contaminated soils. Available via dialog. http://www.ine.gob.mx. Mexico. Accesed 21 august 2008.

Download references

Acknowledgments

This work was supported by the Institute of Engineering and the Institute of Agricultural Sciences, UABC. The authors gratefully acknowledge the Federal Energy Commission (CFE) and National Water Commission (CNA), for supplying the information utilized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ramírez-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moncada-Aguilar, A.M., Ramírez-Hernández, J., Quintero-Núñez, M. et al. Origin of Salinity in Groundwater of Neighboring Villages of the Cerro Prieto Geothermal Field. Water Air Soil Pollut 213, 389–400 (2010). https://doi.org/10.1007/s11270-010-0393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0393-1

Keywords

Navigation