Skip to main content
Log in

Geochemical Mobility and Bioavailability of Heavy Metals in a Lake Affected by Acid Mine Drainage: Lake Hope, Vinton County, Ohio

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sandy Run (Vinton County, southeastern Ohio, USA) is a stream receiving acid mine drainage (AMD) from an abandoned coal mine complex. This stream has been dammed to form Lake Hope. The heavy metal composition of waters (benthic and pore), sediments, and macroinvertebrates in the lake reservoir sediments were analyzed. Lake waters contained Mn as the heavy metal present in higher concentrations followed by Fe, Al, and Zn. Depletion of Fe and Al occurred from precipitation of less soluble Fe and Al oxides and hydroxides along Sandy Run before entering the lake, producing a high Mn water input into the reservoir. Concentrations of heavy metals in the sediments increased toward the dam area. Sequential extraction of metals in the sediments showed that the highest fractions of metals corresponded to the detrital fraction or eroded material from the watershed and metals associated with iron and manganese hydroxides. Heavy metals in the organic sediment fraction were low. Heavy metals from the AMD source, as well as sediments rich in heavy metals eroded from the watershed, were transported to the downstream dam area and stored at the bottom, producing the observed chemistry. Heavy metals in benthic waters also were sourced from the diffusion of ions from sediments and lake waters as variation in pH and redox conditions determined the flux at the sediment–water interface. Metal concentrations were measured within two deposit feeders, oligochaetes and chironomids, and compared to trends in physical metal concentration across the lake. For the four heavy metals with higher concentration in both benthic animals, the concentrations followed the trend: Fe > Al > Mn > Zn, which were similar to the bioavailable metals in the sediments rather than the pore or the benthic water where Mn was the most abundant heavy metal. Ingestion of sediment, not exposure to pore or benthic waters, appeared to be the main transfer mechanism for metals into the biota. Trends and patterns in animal metal concentrations across the lake were probably a complex process controlled by metabolic needs and metallic regulation and tolerance. Even when Mn was the highest concentration heavy metal in the pore waters, it was the lowest to bioconcentrate in the organisms. In comparison, Cd, the lowest concentration metal in the sediments, presented one of the highest bioaccumulation factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (p. 866). New York: Springer-Verlag.

    Google Scholar 

  • Bendell-Young, L., & Harvey, H. H. (1992). The relative importance of manganese and iron oxides and organic matter in the sorption of trace metals by surficial lake sediments. Geochimica et Cosmochimica Acta, 56, 1175–1186.

    Article  Google Scholar 

  • Benson, W. H., Alberts, J. J., Allen, H. E., Hunt, C. D., & Newman, M. C. (1994). Synopsis of discussion session on the bioavailability of inorganic contaminants. In J. L. Hamelink, P. F. Landrum, & H. L. Bergman (Eds.), Bioavailability: Physical, chemical, and biological interactions (pp. 63–71). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Berg, M. B. (1995). Larval food and feeding behavior. In P. D. Armitage, P. S. Cranston, & L. C. V. Pinder (Eds.), The chironomidae: Biology and ecology of non-biting midges (pp. 136–168). London: Chapman & Hall.

    Google Scholar 

  • Bervoets, L., Blust, R., de Wit, M., & Verheyen, R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environmental Pollution, 95, 345–356.

    Article  CAS  Google Scholar 

  • Bervoets, L., Solis, D., Romero, A. M., Van Damme, P. A., & Ollevier, F. (1998). Trace metal levels in chironomid larvae and sediments from a Bolivian river: Impact of mining activities. Ecotoxicology and Environmental Safety, 41, 275–283.

    Article  CAS  Google Scholar 

  • Brinkhurst, R. O., & Cook, D. G. (1974). Aquatic earthworms (Annelida: Oligochaeta). In C. W. Hart Jr. & S. L. H. Fuller (Eds.), Pollution ecology of freshwater invertebrates (pp. 143–156). New York: Academic.

    Google Scholar 

  • Butler, T. W., II. (2006). Geochemical and biological controls in trace metal transport in an acid mine impacted watershed. Environmental Geochemistry and Health, 28, 231–241.

    Article  CAS  Google Scholar 

  • Chapman, P. M., Churchland, L. M., Thomson, P. A., & Michnowsky, E. (1980). Heavy metal studies with oligochaetes. In R. O. Brinkhurst & D. G. Cook (Eds.), Aquatic oligochaete biology (pp. 477–502). New York: Plenum Press.

    Google Scholar 

  • Cole, G. A. (1994). Textbook of limnology (4th ed., p. 412). Prospect Heights, IL: Waveland Press, Inc.

    Google Scholar 

  • Davis, R. B. (1974). Stratigraphic effects of tubificids in profundal lake sediments. Limnology and Oceanography, 19, 466–488.

    Article  Google Scholar 

  • Dills, G., & Rogers, D. T., Jr. (1974). Macroinvertebrate community structure as an indicator of acid mine pollution. Environmental Pollution, 6, 239–262.

    Article  CAS  Google Scholar 

  • Donoghue, J. F., Ragland, P. C., Chen, Z. Q., & Trimble, C. A. (1998). Standardization of metal concentrations in sediments using regression residuals: An example from a large lake in Florida, USA. Environmental Geology, 36, 65–76.

    Article  CAS  Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., p. 436). New Jersey: Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Fisher, J. B., Lick, W. J., McCall, P. L., & Robbins, J. A. (1980). Vertical mixing of lake sediments by Tubificid Oligochaetes. J Geophys Res, 85C, 3997–4006.

    Article  Google Scholar 

  • Flores-Tena, F. J., & Martínez-Tabche, L. (2001). The effect of chromium on the hemoglobin concentration of Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae). Ecotoxicology and Environmental Safety, 50, 196–202.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). New Jersey: Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trends in Analytical Chemistry, 21, 451–467.

    Article  CAS  Google Scholar 

  • Gunn, A. M., Winnard, D. A., & Hunt, D. T. E. (1988). Trace metal speciation in sediments and soils. In J. R. Kramer & H. E. Allen (Eds.), Metal speciation: Theory, analysis, and application (pp. 261–294). Chelsea, MI: Lewis Publishers.

    Google Scholar 

  • Han, F. X., Hargreaves, J. A., Kingery, W. L., Hugget, D. B., & Schlenk, D. K. (2001). Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications. Journal of Environmental Quality, 30, 912–919.

    Article  CAS  Google Scholar 

  • Harris, E. F. (1973). Feasibility study, Lake Hope Mine Drainage Demonstration Project 14010 HJQ. US Environmental Protection Agency, Environmental Protection Technology Series, EPA-R2-73-151. 97 pp.

  • Hem, J. D., & Skougstad, M. W. (1960). Coprecipitation effects in solutions containing ferrous, ferric, and cupric ions. Chemistry of iron in natural water. Geological survey water-supply paper 1459-E. Washington: United States Government Printing Office.

    Google Scholar 

  • Horowitz, A. J. (1991). A primer on sediment-trace element chemistry (2nd ed., p. 136). Chelsea, MI: Lewis Publishers, Inc.

    Google Scholar 

  • Hughes, M. L. (1999). The impact of acid mine drainage on the hydrogeochemistry of the Lake Hope Watershed, Vinton Co., Ohio. M.S. Thesis, Ohio University. 111 pp.

  • Kersten, M., & Förstner, U. (1995). Speciation of trace metals in sediments and combustion waste. In A. M. Ure & C. M. Davidson (Eds.), Chemical speciation in the environment (pp. 234–275). New York: Blackie Academic & Professional.

    Google Scholar 

  • Kimball, B. A., Callender, E., & Axtmann, E. V. (1995). Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, U.S.A. Applied Geochemistry, 10, 285–306.

    Article  CAS  Google Scholar 

  • Kleinmann, R. L. P., Allwes, R. A., Jeran, P. W., Jones, P. M., Matetic, R. J., & Statnick, R. (1995). Environmental issues of the Appalachian coal region. Mining Engineering, 4, 1120–1123.

    Google Scholar 

  • Klerks, P. L., & Bartholomew, P. R. (1991). Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquatic Toxicology, 19, 97–112.

    Article  CAS  Google Scholar 

  • Klerks, P. L., & Levinton, J. S. (1989). Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site. Biological Bulletin, 176, 135–141.

    Article  CAS  Google Scholar 

  • Knox, A. S., Paller, M. H., Nelson, F. A., Specht, W. L., Halverton, N. V., & Gladden, J. B. (2006). Metal distribution and stability in constructed wetland sediment. Journal of Environmental Quality, 35, 1948–1959.

    Article  CAS  Google Scholar 

  • Krauskopf, K. B., & Bird, D. K. (1995). Introduction to geochemistry (3rd ed., p. 640). New York: McGraw-Hill, Inc.

    Google Scholar 

  • Langston, W. J., & Spence, S. K. (1995). Biological factors involved in metal concentrations observed in aquatic organisms. In A. Tessier & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 407–477). New York: Wiley.

    Google Scholar 

  • Lerman, A. (1988). Geochemical processes—water and sediment environments. Wiley Interscience, New York. 480 pp. Reprint edition, Krieger Publishing Company, Malabar, Fla., 481 pp.

  • Li, Y. H., & Gregory, S. (1974). Diffusion of ions in seawater and in deep-sea sediments. Geochemica et Cosmochimica Acta, 38, 703–714.

    Article  CAS  Google Scholar 

  • Lind, C. J., & Hem, J. D. (1996). Manganese and iron oxide deposits and trace metal associations in stream sediments, Pinal Creek Basin, Arizona. In J. G. Brown, B. Favor (Eds.), Hydrology and geochemistry of aquifer and stream contamination related to acidic water in pinal creek near globe Arizona (pp. 81–103). US Geological Survey Water-Supply Paper 2466

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Marple, M. F. (1954). The geology of Lake Hope State Park (p. 30). Columbus, OH: Division of geological survey information circular No. 13, Ohio Department of Natural Resources.

    Google Scholar 

  • Martínez, D. E., & Levinton, J. (1996). Adaptation to heavy metals in the aquatic oligochaete Limnodrilus hoffmeisteri: evidence for control by one gene. Evolution, 50, 1339–1343.

    Article  Google Scholar 

  • Matisoff, G. (1995). Effects of bioturbation on solute and particle transport in sediments. In H. E. Allen (Ed.), Metal contaminated aquatic sediments (pp. 201–272). Chelsea MI: Ann Arbor Press.

    Google Scholar 

  • Mattuck, R., & Nikolaidis, N. P. (1996). Chromium mobility in freshwater wetlands. Journal of Contaminant Hydrology, 23, 213–232.

    Article  CAS  Google Scholar 

  • Maynard, J. B. (2003). Manganiferous sediments, rocks, and ores. Treatise in Geochemistry, 7, 289–308.

    Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils (p. 406). New York: Oxford University Press.

    Google Scholar 

  • McCall, P. L., & Fisher, J. B. (1980). Affects of tubificid oligochaetes on physical and chemical properties of the Lake Erie sediments. In R. O. Brinkhurst & D. G. Cook (Eds.), Aquatic oligochaete biology (pp. 253–318). New York: Plenum Press.

    Google Scholar 

  • McCall, P. L., & Tevesz, M. J. S. (1982). The effects of benthos on physical properties of freshwater sediments. In P. L. McCall & M. J. S. Tevesz (Eds.), Animal-sediment relations: The biogenic alteration of sediments (pp. 105–176). New York: Plenum Press.

    Google Scholar 

  • Morris, G. L., & Fan, J. (1998). Reservoir sedimentation handbook. Design and management of dams, reservoirs, and watersheds for sustainable use. In Chapter 10: Sediment deposits in reservoirs (pp. 10.1–10.42). New York: McGraw-Hill.

  • Newman, M. C. (1996). Measuring metals and metalloids in water, sediments, and biological tissues. In G. K. Ostrander (Ed.), Techniques in aquatic toxicology (pp. 493–516). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Ng, T. Y.-T., & Wood, C. M. (2008). Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout. Aquatic Toxicology, 87, 47–59.

    Article  CAS  Google Scholar 

  • NYSDEC. (1999). Technical guidance for screening contaminated sediments. New York State Department of Environmental Conservation, Division of Fish, Wildlife, and Marine Resources. 39 pp.

  • OEPA. (1992). Ohio water resource inventory, volume 3: Ohio's public lakes, ponds, and reservoirs. Columbus, OH: Ohio Environmental Protection Agency. 24 pp.

    Google Scholar 

  • Orciari, R. D., & Hummon, W. D. (1975). A comparison of benthic oligochaete populations in acid and neutral lentic environments in southeastern Ohio. Ohio Journal of Science, 75, 44–49.

    Google Scholar 

  • Pigati, E., & López, D. L. (1999). Effect of subsidence on recharge at abandoned coal mines generating acidic drainage: The Majestic Mine, Athens County, Ohio. Mine Waters and the Environment, 18, 45–66.

    Article  CAS  Google Scholar 

  • Potter, P. E., Maynard, J. B., & Depetris, P. J. (2005). Mud and mudstones (p. 297). Berlin: Springer.

    Google Scholar 

  • Power, E. A., & Chapman, P. M. (1992). Assessing sediment quality. In G. A. Burton Jr. (Ed.), Sediment toxicity assessment (pp. 1–18). Ann Arbor, MI: Lewis Publishers, Inc.

    Google Scholar 

  • Prim, D. L. (1999). The effect of acid mine drainage on sedimentation processes and water quality at Lake Hope, Lake Hope State Park, Vinton County, Ohio. M.S. Thesis, Athens: Ohio University. 158 pp.

  • Radwan, S., Kowalik, W., & Kornijow, R. (1990). Accumulation of heavy metals in a lake ecosystem. Science of the Total Environment, 96, 121–129.

    Article  CAS  Google Scholar 

  • Reinhold, J. O., Hendricks, A. J., Slager, L. K., & Ohm, M. (1999). Transfer of microcontaminants from sediment to chironomids, and the risk for the Pond bat Myotis dasycneme (Chiroptera) preying on them. Aquatic Ecology, 33, 363–376.

    Article  CAS  Google Scholar 

  • Reuther, R. (1999). Trace metal speciation in aquatic sediments: methods, benefits, and limitations. In A. Mudroch, J. M. Azcue, & P. Mudroch (Eds.), Manual of bioassessment of aquatic sediment quality (pp. 1–54). New York: CRC Press.

    Google Scholar 

  • Reynolds, S. A. (1999). Sedimentation and contaminants in O'Shaughnessy and Griggs Reservoirs, Scioto River, Delaware and Franklin Counties, Ohio. M.S. Thesis, Athens: Ohio State University. 175 pp.

  • Roback, S. S. (1974). Insects (Arthropoda: Insecta). In C. W. Hart Jr. & S. L. H. Fuller (Eds.), Pollution ecology of freshwater invertebrates (pp. 313–376). New York: Academic.

    Google Scholar 

  • Roesijadi, G., & Robinson, W. E. (1994). Metal regulation in aquatic animals: Mechanisms of uptake, accumulation, and release. In D. C. Malins & G. K. Ostrander (Eds.), Aquatic toxicology. Molecular, biochemical, and cellular perspectives (pp. 387–420). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Sager, M., & Pucsko, R. (1991). Trace element concentrations of oligochaetes and relations to sediment characteristics in the reservoir at Altenwörth/Austria. Hydrobiologia, 226, 39–49.

    Article  CAS  Google Scholar 

  • Stout, W. (1927). Geology of Vinton County. Bulletin 31 (p. 402). Columbus, OH: Ohio Department of Natural Resources, Division of Geological Survey.

    Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd ed., p. 1040). New York: Wiley Interscience.

    Google Scholar 

  • Swan, A. R. H., & Sandilands, M. (1995). Introduction to geological data analysis (p. 446). Oxford: Blackwell Science.

    Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1988). Partitioning of trace metals in sediments. In J. Kramer & H. E. Allen (Eds.), Metal speciation: Theory, analysis, and application (pp. 183–199). Chelsea, Michigan: Lewis Publishers, Inc.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Timmermans, K. R., Peeters, W., & Tonkes, M. (1992). Cadmium, zinc, lead, and copper in Chironomus riparius (Meigen) larvae (Diptera, Chironomidae): Uptake and effects. Hydrobiologia, 241, 119–134.

    Article  CAS  Google Scholar 

  • Timmermans, K. R., Van Hattum, B., Kraak, M. H. S., & Davids, C. (1989). Trace metals in a littoral food web: Concentrations in organisms, sediment, and water. Science of the Total Environment, 87(88), 477–494.

    Article  Google Scholar 

  • Timmermans, K. R., Van Hattum, B., Peeters, W., & Davids, K. (1991). Trace metals in the benthic habitat of the Maarsseveen Lakes System, the Netherlands. Hydrobiology Bulletin, 24, 153–164.

    Article  CAS  Google Scholar 

  • Tobin, R., & Youger, J. D. (1977). Limnology of selected Lakes in Ohio-1975. U.S. Geological Survey Water-Resources Investigations Report 77–105. 205 pp.

  • USEPA. (1995). EPA Method 3050B: Acid digestion of sediments, sludges, and soils. In SW-846: Test methods for evaluating solid waste, physical/chemical methods.

  • Van Damme, P. A., Hamel, C., Ayala, A., & Bervoets, L. (2008). Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia). Environmental Pollution, 156, 1061–1068.

    Article  Google Scholar 

  • Van Ryssen, R., Leermakers, M., & Baeyens, W. (1999). The mobilization potential of trace metals in aquatic sediments as a tool for sediment quality classification. Environmental Science and Policy, 2, 75–86.

    Article  Google Scholar 

  • Verplanck, P. L., Nordstrom, D. K., & Kimball, B. A. (2000). Behavior of iron and aluminum colloids and the attenuation of metals in a stream receiving acid mine drainage, Boulder, Montana. Geological Society of America Abstracts with Programs, 32(7), A-78.

    Google Scholar 

  • Webster, J. G., Swedlund, P. J., & Webster, K. S. (1998). Trace metal absorption onto an acid mine drainage iron (III) oxy hydroxy sulfate. Environmental Science and Technology, 32, 1361–1368.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: Lakes and river ecosystems (p. 1006). New York: Academic.

    Google Scholar 

  • Young, T. C., Waltman, M. R., Theis, T. L., & DePinto, J. V. (1992). Studies of heavy metal sorption by trenton channel (Detroit River) sediments. Hydrobiologia, 235(236), 649–660.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Baker grant from Ohio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina L. López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, D.L., Gierlowski-Kordesch, E. & Hollenkamp, C. Geochemical Mobility and Bioavailability of Heavy Metals in a Lake Affected by Acid Mine Drainage: Lake Hope, Vinton County, Ohio. Water Air Soil Pollut 213, 27–45 (2010). https://doi.org/10.1007/s11270-010-0364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0364-6

Keywords

Navigation