Skip to main content

Advertisement

Log in

3-Chlorophenol Biodegradation in a Sequencing Batch Reactor: Kinetic Study and Effect of the Filling Time

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biodegradation kinetics of 3-chlorophenol (3-CP) were studied in two identical lab scale sequencing batch reactors (SBR) fed with the compound as the sole energy and carbon source and operated at different filling time (1 h for SBR1 and 2 h for SBR2). High removal efficiency was always obtained in both SBRs in the range of feed concentration of 300–960 mg L−1. Increased feed load to 1,200 mg L−1 3-CP could also be removed in SBR1 despite the presence of inhibition, whereas determined failure of SBR2. Long filling time and high biomass concentration were shown to have beneficial effect on process kinetics since they allowed to avoid substrate concentration peaks at the end of the fill phase. However, longer filling time (in the present case higher than 1 h) did not allow to select and enrich robust microbial population. The Haldane equation well fitted the kinetic test data measured in the presence of inhibition, i.e., at 960 and 1,200 mg L−1 3-CP in SBR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SBR:

Sequencing batch reactor

CFSTR:

Continuous flow stirred tank reactor

DO:

Dissolved oxygen concentration (mg O2 L−1)

OUR:

Oxygen uptake rate (mg O2/L−1 h−1)

V TOT :

Working volume (L)

t FILL :

Filling time (h)

V IN :

Influent volume (L)

3-CP:

3-chlorophenol

C IN :

3-CP influent concentration (mg L−1)

COD:

Chemical oxygen demand (mg L−1)

MLSS:

Mixed liquor suspended solids (mg L−1)

MLVSS:

Mixed liquor volatile suspended solids (mg L−1)

TSS:

Total suspended solids (mg L−1)

VER:

Volumetric exchange rate (adim.)

VSS:

Volatile suspended solids (mg L−1)

Y :

Growth yield coefficient (mg VSS mg COD−1)

b :

Endogenous respiration rate (day−1)

SVI:

Sludge volume index (mL g−1)

F co :

Influent organic loading factor (mg COD mg VSS−1 day−1)

F cv :

Volumetric organic loading factor (g COD L−1 day−1)

k max :

Maximum specific removal rate (mg COD mg VSS−1 day−1)

k*:

Real maximum specific removal rate (mg COD mg VSS−1 day−1)

U(S):

Substrate specific utilization rate (mg COD mg VSS−1 h−1)

K s :

Saturation constant (mg L−1)

K I :

Inhibition constant (mg L−1)

μ :

Maximum specific growth rate (day−1)

μ*:

Real maximum specific growth rate (day−1)

C*:

Critical substrate concentration (mg L−1)

\( C_{{3} - {\rm{CP,}}i}^{{ \exp }} \) :

Experimental 3-CP concentration (mg L−1)

\( C_{{3} - {\rm{CP,}}i}^{\rm{cal}} \) :

Modeled 3-CP concentration (mg L−1)

References

  • Andrews, J. F. (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology Bioengineering, 10(6), 707–723.

    Article  CAS  Google Scholar 

  • APHA/AWWA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public health Association.

    Google Scholar 

  • Carucci, A., Chiavola, A., Majone, M., & Rolle, E. (1999). Treatment of tannery wastewater in a sequencing batch reactor. Water Science and Technology, 40(1), 253–259.

    Article  CAS  Google Scholar 

  • Chiavola, A., McSwain, B. S., Irvine, R. L., Boni, M. R., & Baciocchi, R. (2003). Biodegradation of 3-chlorophenol in a Sequencing Batch Reactor. Journal of Environmental Science & Health, Part A, A38(10), 2113–2123.

    Article  CAS  Google Scholar 

  • Chiavola, A., Baciocchi, R., Irvine, R. L., Gavasci, R., & Sirini, P. (2004). Aerobic biodegradation of 3-chlorophenol in a Sequencing Batch Reactor. Effect of cometabolism. Water Science and Technology, 50(10), 235–242.

    CAS  Google Scholar 

  • Chiesa, S. C., Irvine, R. L., & Manning, J. F. (1984). Feast/famine growth environments and activated sludge population selection. Biotechnology and Bioengineering, XXVII, 562–569.

    Google Scholar 

  • Eweis, J. B., Ergas, S. J., Chang, D. P. Y., & Schroeder, E. D. (1998). Bioremediation principles. New York: McGraw-Hill.

    Google Scholar 

  • Haggblom, M. M., & Valo, R. J. (1995). Microbial transformation and degradation of organic chemicals. In L. Y. Young & C. E. Cerniglia (Eds.), Bioremediation of chlorophenol wastes (pp. 389–434). New York: Wiley-Liss, Inc.

    Google Scholar 

  • Lee, C. M., Lu, C. J., & Chuang, M. S. (1994). Effects of immobilized cells on the biodegradation of chlorinated phenols. Water Science and Technology, 30(9), 87–90.

    CAS  Google Scholar 

  • Lu, C. J., & Tsai, Y. H. (1993). The effects of a secondary carbon source on the biodegradation of recalcitrant compounds. Water Science and Technology, 28(7), 97–101.

    CAS  Google Scholar 

  • Lu, C. J., Lee, C. M., & Huang, C. Z. (1996). Biodegradation of chlorophenols by immobilized pure-culture microorganisms. Water Science and Technology, 34(10), 67–72.

    Article  CAS  Google Scholar 

  • Katayama-Hirayama, K., Tobita, S., & Hirayama, K. (1994). Biodegradation of phenol and monochlorophenols by yeast Rhodotorula Glutinis. Water Science and Technology, 30(9), 59–66.

    CAS  Google Scholar 

  • Macé, S., & Mata-Alvarez, J. (2002). Utilization of SBR technology for wastewater treatment: An overview. Industrial & Engineering Chemistry Research, 41(23), 5539–5553.

    Article  Google Scholar 

  • Metcalf and Eddy. (2003). Wastewater engineering. Treatment and Reuse (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Nuhoglu, A., & Beste, Y. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239.

    Article  CAS  Google Scholar 

  • Tomei, M. C., Annesini, M. C., Luberti, R., Cento, G., & Senia, A. (2003). Kinetics of 4-nitrophenol biodegradation in a sequencing batch reactor. Water Research, 37, 3803–3814.

    Article  CAS  Google Scholar 

  • Tomei, M. C., Annesini, M. C., & Bussoletti, S. (2004). 4-nitrophenol biodegradation in a sequencing batch reactor: kinetic study and effect of filling time. Water Research, 38, 375–384.

    Article  CAS  Google Scholar 

  • Wilderer, P. A., Irvine, R. L., & Goronszy, M. C. (2001). Sequencing batch reactor technology. Scientific and technical report N. 10. London: IWA.

    Google Scholar 

  • Wei, Y., Van Houten, R. T., Borger, A. R., Eikelboom, D. H., & Fan, Y. (2003). Minimization of excess sludge production for biological wastewater treatment. Water Research, 37, 4453–4467.

    Article  CAS  Google Scholar 

  • Yang, X. F., Xie, M. L., & Liu, Y. (2003). Metabolic uncouplers reduce excess sludge production in an activated sludge process. Process Biochemistry, 38(9), 1373–1377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostina Chiavola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiavola, A., Baciocchi, R. & Barducci, F. 3-Chlorophenol Biodegradation in a Sequencing Batch Reactor: Kinetic Study and Effect of the Filling Time. Water Air Soil Pollut 212, 219–229 (2010). https://doi.org/10.1007/s11270-010-0334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0334-z

Keywords

Navigation