Skip to main content
Log in

Isotopic Record of Lead Contamination in Alluvial Soils and Tree Rings on Recent Floodplains (Southern Québec, Canada)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Current and past industrial pollution leaves many traces in the environment, in particular along rivers in industrial and urban areas. The isotopic analysis of the lead found in soils and tree rings offers a kind of environmental archive for presenting a portrait of the pollutant distribution in the environment in both spatial and temporal terms. This study is an attempt to identify and compare the source of contamination found in soils and tree rings located along two rivers affected by pollution over several years. Specifically, the focus is on the pattern of lead concentrations and lead isotopic signatures (206Pb/207Pb, 208Pb/206Pb, and 206Pb/204Pb) detected in soils and tree rings located on polluted floodplains. The concentration of Pb in overbank sediments does not rise with the increasing distance downstream from the point source (mining area), suggesting that significant fluvial transport of the pollutant particles over 80 km is involved. For the soil profiles, Pb concentration levels range between 12.32 and 149.13 mg/kg, with the highest concentrations found at the base of the profiles (>1 m). For the lead isotope ratios in the soil profiles, the values obtained range from 0.851 to 0.872 (206Pb/207Pb), 2.081 to 2.111 (208Pb/206Pb), and 0.547 to 0.562 (206Pb/204Pb). The tree ring analysis of red ash (Fraxinus pennsylvanica Marsh.) shows average lead concentrations of 0.63 μg/g, and the lead values of all the tree specimens range between 0.03 and 11.38 μg/g. Pb concentrations varied greatly between the specimens in selected sites and lead isotope ratios in the tree rings showed a strong variability in the time series, particularly from 1945 to 1970. The greater number of variations in the lead concentration rates and isotopic ratios suggest that many more events associated with pollution and contamination have in fact occurred in this area. The study demonstrates the utility of combining stable isotope analyses (soils and tree rings) to examine the source and dispersion of contaminant Pb in fluvial systems by providing reliable and robust indicators for the detection of environmental changes on a local and regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In Canada, the lead content in gasoline was reduced in the 1980s (Bollhöfer and Rosman 2001) and gasoline with lead was removed from the market for good in 1990 (CEPA 1990).

  2. The former Eustis mine was part of mining complex that includes two other copper mines, including the Albert and Capelton mines located less than 2 km from Eustis.

References

  • Aznar, J. C., Richer-Laflèche, M., Bégin, C., & Rodrigue, R. (2008). Spatiotemporal reconstruction of lead contamination using tree rings and organic soil layers. Science of the Total Environment, 407, 233–241.

    Article  CAS  Google Scholar 

  • Bégin, C., Cloutier, J., & Laflèche, M. R. (1997). Évaluation environnementale d’un espace libre associé à la trame verte de Montréal dans une perspective de valorisation: une approche dendrogéochimique. Rapport prepared by Institut national de la recherche scientifique (INRS-Géoressources, INRS-Urbanisation) and Centre géoscientifique de Québec (CGQ) for Ville de Montréal.

  • Bellinger, D. (1995). Neurpsychologic functions in children exposed to environmental lead. Epidemicology, 6, 101–103.

    Article  CAS  Google Scholar 

  • Bindler, R., Rengerg, I., Klaminder, J., & Emteryd, O. (2004). Tree rings as Pb pollution archives? A comparaison of 206Pb/207Pb isotope ratios in pine and other environmental media. Science of the Total Environment, 319, 173–183.

    Article  CAS  Google Scholar 

  • Bollhöfer, A., & Rosman, J. R. (2001). Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochimica et Cosmochimica Acta, 65, 1727–1740.

    Article  Google Scholar 

  • Carignan, J., Simonetti, A., & Gariépy, C. (2002). Dispersal of atmospheric lead in northeastern North America as recorded by epiphytic lichens. Atmospheric Environment, 36, 3759–3766.

    Article  CAS  Google Scholar 

  • Carter, M. R. (1993). Soil sampling and methods of analysis. Canadian Society of Soil Science (p. 823). Boca Raton: Lewis.

    Google Scholar 

  • Castonguay, S., & Saint-Laurent, D. (2009). Reconstructing reforestation: Changing land use patterns along the St. Francis River in the eastern townships. In A. MacEachern & W. J. Turkel (Eds.), Method and meaning in Canadian environmental history (pp. 273–292). Toronto: Thomson Nelson.

    Google Scholar 

  • CEPA (Canadian Environmental Protection Act) (1990). Lead-Free gasoline regulations. C.R.C., c. 408, Environment Canada, SOR/90-247, Canada.

  • Choinière, J., & Beaumier, M. (1997). Bruits de fond géochimiques pour différents environnements géologiques au Québec (p. 60). Québec: Ministère des Ressources Naturelles.

    Google Scholar 

  • Ciszewski, D. (2003). Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution change. Water, Air, and Soil Pollution, 143, 81–98.

    Article  CAS  Google Scholar 

  • Cutter, B. E., & Guyette, R. P. (1993). Anatomical, chemical and ecological factors affecting tree species choice for dendrochemistry studies. Journal of Environmental Quality, 22, 611–619.

    CAS  Google Scholar 

  • Dewalle, D. R., Tepp, J. S., Swistock, B. R., & Sharpe, W. E. (1999). Tree-ring cation response to experimental watershed acidification in West Virginia and Maine. Journal of Environmental Quality, 228, 299–309.

    Article  Google Scholar 

  • Dorea, J. G. (2008). Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Science of the Total Environment, 400, 93–114.

    Article  CAS  Google Scholar 

  • Eklund, M. (1995). Cadmium and lead deposition around a Swedish battery plant as recorded in oak tree rings. Journal of Environmental Quality, 24, 126–131.

    Article  CAS  Google Scholar 

  • Erel, Y., Veron, A., & Halicz, L. (1997). Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochimica et Cosmochimica Acta, 61, 4495–4505.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevic, M., Sebek, O., Molek, M., Grygar, T., & Zeman, J. (2006). Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Príbram, Czech Republic. Environmental Pollution, 142, 27–35.

    Article  CAS  Google Scholar 

  • Gagneten, A. M., Gervasio, S., & Paggi, J. C. (2007). Heavy metal pollution and eutrophication in the Lower Salado River Basin, Argentina. Water, Air, and Soil Pollution, 178, 335–349.

    Article  CAS  Google Scholar 

  • Gallon, C., Tessier, A., Gobeil, C., & Beaudin, L. (2005). Sources and chronology of atmospheric lead deposition to a Canadian Shield lake: Inferences from Pb isotopes and PAH profiles. Geochimica et Cosmochimica Acta, 69, 3199–3210.

    Article  CAS  Google Scholar 

  • Gallon, C., Tessier, A., Gobeil, C., & Carignan, R. (2006). Historical perspective of industrial lead emission to the atmosphere from a Canadian smelter. Environmental Science & Technology, 40, 741–747.

    Article  CAS  Google Scholar 

  • Graney, J. R., Halliday, A. N., Keeler, G. J., Nriagu, J. O., Robbins, J. A., & Norton, S. A. (1995). Isotopic record of lead pollution in lake sediments from the northeastern United States. Geochimica et Cosmochimica Acta, 59, 1715–1728.

    Article  CAS  Google Scholar 

  • Grousset, F. E., Quétel, C. R., Thomas, B., Buat-Ménard, P., Donard, O. X. F., & Bucher, A. (1994). Transient Pb isotopic signatures in the Western European atmosphere. Environmental Science & Technology, 28, 1605–1608.

    Article  CAS  Google Scholar 

  • Gulson, B. (2008). Stable lead isotopes in environmental health with emphasis on human investigations. Science of the Total Environment, 400, 75–82.

    Article  CAS  Google Scholar 

  • Gulson, B. L., Tiller, K. G., Mizon, K. J., & Merry, R. H. (1981). Use of lead isotope ratios in soils to identify the source of lead contamination near Adelaide, South Australia. Environmental Science & Technology, 15, 691–696.

    Article  CAS  Google Scholar 

  • Guyette, R. P., Cutter, B. E., & Henderson, G. S. (1991). Long-term correlations between minning activity and levels of lead and cadmium in tree-rings of eastern red-cedar. Journal of Environmental Quality, 20, 146–150.

    CAS  Google Scholar 

  • Hagemeyer, J., & Lohrie, K. (1995). Distributions of Cd and Zn in annual xylem rings of young spruce trees (Picea abies L. Karst.) grown in contaminated soil. Trees, 9, 195–199.

    Google Scholar 

  • Hou, X., Parent, M., Savard, M. M., Tassé, N., Bégin, C., & Marion, J. (2006). Lead concentrations and isotope ratios in the exchangeable fractions: Tracing soil contamination near a copper smelter. Geochemistry: Exploration, Environment, Analysis, 6, 229–236.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2004). Soil–Plant transfer of trace element—An environmental issue. Geoderma, 122, 143–149.

    Article  CAS  Google Scholar 

  • Komárek, M., Ettler, V., Chrastny, V., & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, 562–577.

    Article  CAS  Google Scholar 

  • Kylander, M. E., Weiss, D. J., & Kober, B. (2008). Two high resolution terrestrial records of atmospheric Pb deposition from New Brunswick, Canada, and Loch Laxford, Scotland. Science of the Total Environment, 407, 1644–1657.

    Article  CAS  Google Scholar 

  • Lavoie, L., Saint-Laurent, D., & St-Laurent, J. (2006). Pedological and sedimentological analyses of alluvial soils and paleosols on floodplain terraces. Canadian Journal of Soil Science, 86, 813–826.

    CAS  Google Scholar 

  • MDDEP (Ministère du Développement durable, de l’Environnement et de la Faune) (2002). Politique de protection des sols et de réhabilitation des terrains contaminés. Annexe 2: Les critères génériques pour les sols et pour les eaux souterraines, Gouvernement du Québec. [http://www.mddep.gouv.qc.ca/sol/terrains/politique/annexe_2.htm].

  • MDDEP (Ministère du Développement durable, de l’Environnement et des Parcs) (2004). Portrait global de la qualité de l'eau des principales rivières du Québec, Gouvernement du Québec [http://www.mddep.gouv.qc.ca/eau/bassinversant/global-2004/index.htm].

  • Mellor, A., & Bevan, B. R. (1999). Lead in soil and stream sediments of an urban catchment in Tyneside, UK. Water, Air, and Soil Pollution, 112, 327–348.

    Article  CAS  Google Scholar 

  • Mihaljevič, M., Zuna, M., Ettler, V., Chrastnў, V., Śebek, O., Strnad, L., et al. (2008). A comparison of tree rings and peat deposit geochemical archives in the vicinity of a lead smelter. Water, Air, and Soil Pollution, 188, 311–321.

    Article  CAS  Google Scholar 

  • Monna, F., Lancelot, J., Croudace, I., Cundy, A. B., & Lewis, T. (1997). Pb isotopic signatures of urban air in France and in UK: Implications on Pb pollution sources. Environmental Science & Technology, 31, 2277–2286.

    Article  CAS  Google Scholar 

  • Monna, F., Hamer, K., Lévêque, J., & Sauer, M. (2000). Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). Journal of Geochemical Exploration, 68, 201–210.

    Article  CAS  Google Scholar 

  • Ndzangou, S. O., Richer-Laflèche, M., & Houle, D. (2005). Sources and evolution of anthropogenic lead in dated sediments from Lake Clair, Québec, Canada. Journal of Environmental Quality, 34, 1016–1025.

    Article  CAS  Google Scholar 

  • Pacyna, J. M., Scholtz, M. T., & Li, Y. F. (1995). Global budget of trace metal sources. Environmental Reviews, 3, 145–159.

    CAS  Google Scholar 

  • Padilla, K. L., & Anderson, K. A. (2002). Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere, 49, 575–585.

    Article  CAS  Google Scholar 

  • Ross, W. G. (1975). Three Eastern Townships mining villages since 1863: Albert Mines, Capelton, Eustis. Lennoxville: Department of Geography, Bishop’s University.

    Google Scholar 

  • Saint-Laurent, D., Hähni, M., & St-Laurent, J. (2008a). Spatial distribution and characterization of contaminated soils in riverbanks of Saint-François and Massawippi Rivers (Southern Québec, Canada). The Water Quality Resources Journal of Canada, 43, 99–109.

    CAS  Google Scholar 

  • Saint-Laurent, D., Lavoie, L., St-Laurent, J., & Ghaleb, B. (2008b). Use geopedological approach for the evaluation of sedimentation rates on river floodplains, southern Québec, Canada. CATENA, 73, 321–337.

    Article  Google Scholar 

  • Saint-Laurent, D., Duplessis, P., St-Laurent, J., & Lavoie, L. (2009a). Reconstructing contamination events on riverbanks in southern Québec using dendrochronology and dendrochemical methods. Dendrochronologia (in press).

  • Saint-Laurent, D., Lavoie, L., Drouin, A., St-Laurent, J., & Ghaleb, B. (2009b). Estimation of floodplain sedimentation rates using flood events, soil properties and radioisotopic methods. Global and Planetary Change (in press).

  • Savard, M. M., Bégin, C., Parent, M., Marion, J., & Smirnoff, A. (2006). Dendrogeochemical distinction between geogenic and anthropogenic emissions of metals and gases near a copper smelter. Geochemistry: Exploration, Environment, Analysis, 6, 237–247.

    Article  CAS  Google Scholar 

  • SCWG (Soil Classification Working Group) (1998). The Canadian system of soil classification. Research Branch, Agriculture and Agri-Food Canada, publication 1646 (3rd ed.). Ottawa: NRC Research.

    Google Scholar 

  • Simonetti, A., Gariépy, C., & Carignan, J. (2000). Chemical and Pb and Sr isotopic study of 1998 snowpack from north-eastern North America: Sources and deposition budgets of atmospheric heavy metals. Geochimica et Cosmochimica Acta, 64, 3439–3452.

    Article  CAS  Google Scholar 

  • Simonetti, A., Gariépy, C., Carignan, J., & Poissant, L. (2004). Pb isotopic investigation of aircraft-sampled emissions from the Horne smelter (Rouyn, Québec): Implications for atmospheric pollution in northeaster North America. Geochimica et Cosmochimica Acta, 68, 3285–3294.

    Article  CAS  Google Scholar 

  • Smith, K. T., & Shortle, W. C. (1996). Tree biology and dendrochemistry. In J. S. Dean, D. M. Meko & T. W. Swetnam (Eds.), Tree rings, environment and humanity, radiocarbon (pp. 629–635). Tucson: University of Arizona.

    Google Scholar 

  • St-Laurent, J., Saint-Laurent, D., Duplessis, P., & Bégin, C. (2009). Application of dendrochronological and dendrochemical methods for dating contamination events of the Saint-François and Massawippi riverbanks (Québec, Canada). Soil and Sediment Contamination, 18, 1–24.

    Google Scholar 

  • Sturges, W. T., & Barrie, L. A. (1987). Lead 206/207 isotope ratios in the atmosphere of North America: tracers of American and Canadian emissions. Nature, 392, 144–146.

    Article  Google Scholar 

  • Sturges, W. T., & Barrie, L. A. (1989). The use of stable lead 2006 /2007 isotope ratios and elemental composition to discriminate the origins of lead in aerosols at a rural site in eastern Canada. Atmospheric Environment, 28, 1645–1657.

    Google Scholar 

  • Swennen, R., Van Kerr, I., & De Vos, W. (1994). Heavy metal contamination in overbank sediments of the Geul river (East Belgium): Its relation to former Pb-Zn mining activities. Environmental Geology, 24, 12–21.

    CAS  Google Scholar 

  • Walvaren, N., Van Os, B. J. H., Klaver, G Th, Baker, J. H., & Vriend, S. P. (1997). Trace element concentrations and stables lead isotopes in soils as tracers of lead pollution in Graft-De Rijp, The Netherlands. Journal of Geochemical Exploration, 59, 47–58.

    Article  Google Scholar 

  • Watmough, S. A. (1999). Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental Pollution, 106, 391–403.

    Article  CAS  Google Scholar 

  • Weisman, W. H. (1998). Analysis of petroleum hydrocarbons in environmental media. Total petroleum hydrocarbon criteria—Working group series. USA: Air Force Research Laboratory, Operational Toxicology Branch. March 1998.

    Google Scholar 

  • Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19, 1467–1476.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the individuals and organizations that contributed to this study, including the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support. We would like to acknowledge sincerely the reviewers for their constructive comments. We would like also to acknowledge Dr. Christian Bégin (GCC-Québec) for the collaboration, and the Geological Commission of Canada and INRS-ETE laboratory's support for soils and tree rings geochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Saint-Laurent.

Appendix

Appendix

Table 2 Recension of principal studies on lead isotopic composition in different regions of Eastern Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-Laurent, D., St-Laurent, J., Duplessis, P. et al. Isotopic Record of Lead Contamination in Alluvial Soils and Tree Rings on Recent Floodplains (Southern Québec, Canada). Water Air Soil Pollut 209, 451–466 (2010). https://doi.org/10.1007/s11270-009-0213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0213-7

Keywords

Navigation