Skip to main content
Log in

Adsorption of Natural Estrogens and Their Conjugates by Activated Sludge

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Adsorption to biomass is a key mechanism which results in the elimination of natural estrogens and their conjugates from sewage. Freundlich model showed that the adsorption capacities of estrone and 17β-estradiol to activated sludge were the highest at neutral pH. The lower capacities at pH 2 and 11.5 could be due to the competition of sludge adsorption sites by cations or electrostatic repulsion from particles of similar charges. The lowest adsorption capacity at pH 11.5 was attributable to electrostatic repulsion, and the highest capacity at pH 2 might be due to the increased sulfate adsorbability. For estrogen conjugates such as estrone-3-sulfate and 17β-estradiol-3-sulfate, adsorption performances were similar at pH 5, 7, and 9. It was observed that mean values of log K D were 2.78, 2.61, 1.67, and 1.94 l kg TSS−1; log K OM were 2.96, 2.79, 1.77, and 2.04 l kg VSS−1 and those of log K OC were 3.31, 3.12, 2.21, and 2.46 l kg OC−1 for estrone, 17β-estradiol, estrone-3-sulfate, and 17β-estradiol-3-sulfate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen, H. R., Andersen, A. M., & Arnold, S. F. (1999). Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environmental Health Perspectives, 107(Supp 1), 89–108. doi:10.2307/3434476.

    Article  CAS  Google Scholar 

  • Byrne, S. V. (1991). Mechanisms of interaction between aniline, soil, soft solution, and soil microbes. Doctoral Dissertation, Department of Chemical and Biochemical Engineering, Rutgers University, New Brunswick, NJ

  • Chilvers, C., Pike, M. C., Forman, D., Fogelman, K., & Wadsworth, M. E. (1984). Apparent doubling of frequency of undescended testicles in England and Wales 1962–81. The Lancet, 2, 330–332.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., Saracevic, E., & Kreuzinger, N. (2004). Adsorption of bisphenol-A, 17β-estradiole and 17α-ethinylestradiole to sewage sludge. Chemosphere, 45, 843–851. doi:10.1016/j.chemosphere.2004.04.048.

    Article  Google Scholar 

  • Colborn, T., Dumanoski, D., & Myers, J. P. (1996). Our stolen future. New York: Dutton.

    Google Scholar 

  • Conrad, A., Cadoret, A., Corteel, P., Leroy, P., & Block, J. C. (2006). Desorption of linear alkylbenzene sulfonate (LAS) and azoproteins by/from activated sludge flocs. Chemosphere, 62(1), 53–60. doi:10.1016/j.chemosphere.2005.04.014.

    Article  CAS  Google Scholar 

  • Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 32, 1549–1558. doi:10.1021/es9707973.

    Article  CAS  Google Scholar 

  • Ganaye, V. A., Keiding, K., Vogel, T. M., Viriot, M. L., & Block, J. C. (1997). Evaluation of soil organic matter polarity by pyrene fluorescence spectrum variations. Environmental Science & Technology, 31, 2701–2706. doi:10.1021/es960705u.

    Article  CAS  Google Scholar 

  • Harris, C. A., Henttu, P., Parker, M. G., & Sumpter, J. P. (1997). The estrogenic activity of phthalate esters in vitro. Environmental Health Perspectives, 105, 802–811. doi:10.2307/3433697.

    Article  CAS  Google Scholar 

  • Harward, M. E., & Reisenauer, H. M. (1966). Movement and reactions of inorganic soil sulfur. Soil Science, 101, 326–325. doi:10.1097/00010694-196604000-00012.

    Article  CAS  Google Scholar 

  • Holm, L., Berg, C., Brunstrom, B., Ridderstrale, Y., & Brandt, I. (2001). Disrupted carbonic anhydrase distribution in the avian shell gland following in ovo exposure to estrogen. Archives of Toxicology, 75, 362–368. doi:10.1007/s002040100241.

    Article  CAS  Google Scholar 

  • Hildebrand, C., Londry, K. L., & Farenhorst, A. (2006). Sorption and desorption of three endocrine disrupters in soils. Environmental Science and Health Part B, 41(6), 907–921.

    CAS  Google Scholar 

  • Hu, J. Y., Chen, X., Tao, G., & Kekred, K. (2007). Fate of endocrine disrupting compounds in membrane bioreactor systems. Environmental Science & Technology, 41, 4097–4102. doi:10.1021/es062695v.

    Article  CAS  Google Scholar 

  • Huang, C. H., & Sedlak, D. L. (2001). Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environmental Toxicology and Chemistry, 20, 133–139. doi:10.1897/1551-5028(2001)020<0133:AOEHIM>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Isobe, T., Serizawa, S., Horiguchi, T., Shibata, Y., Managaki, S., Takada, H., et al. (2006). Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay. Environmental Pollution, 144, 632–638. doi:10.1016/j.envpol.2006.01.030.

    Article  CAS  Google Scholar 

  • Jara, A., Violante, A., Pigna, M., & Mora, M. (2006). Mutual interaction of sulfate, oxalate, citrate and phosphate on synthetic and natural allophones. Soil Science Society of America Journal, 70, 337–346. doi:10.2136/sssaj2005.0080.

    Article  CAS  Google Scholar 

  • Jobling, S., Nolan, M., Tyler, C. R., Brighty, G., & Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environmental Science & Technology, 32, 2498–2506. doi:10.1021/es9710870.

    Article  CAS  Google Scholar 

  • Jürgens, M.D., Johnson, A.C., & Williams, R.J. (1999). In fate and behavior of steroid oestrogens in rivers: A scoping study R&D technical report, no. P161. Environment Agency: Rotherham

  • Kimmel, C. A. (1993). Approaches to evaluating reproductive hazards and risks. Environmental Health Perspectives, 101(Suppl. 2), 137–143. doi:10.2307/3431387.

    Article  Google Scholar 

  • Kuyucak, N., & Volesky, B. (1988). Biosorbents for recovery of metals from industrial solutions. Biotechnology Letters, 10, 137–142. doi:10.1007/BF01024641.

    Article  CAS  Google Scholar 

  • Lai, K. M., Johnson, K. L., Scrimshaw, M. D., & Lester, J. N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental Science & Technology, 34, 3890–3894. doi:10.1021/es9912729.

    Article  CAS  Google Scholar 

  • Layton, A. C., Gregory, B. W., Seward, J. R., Schultz, Y. W., & Sayler, G. S. (2000). Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee U.S.A. Environmental Science & Technology, 34, 3925–3931. doi:10.1021/es9914487.

    Article  CAS  Google Scholar 

  • Martinson, L., & Alveteg, L. (2004). The importance of including the pH dependence of sulfate adsorption in a dynamic soil chemistry model. Water, Air, and Soil Pollution, 154, 349–356. doi:10.1023/B:WATE.0000022976.01342.2c.

    Article  CAS  Google Scholar 

  • Mikkelsen, L. H. (2003). Applications and limitations of the colloid titration method for measuring activated sludge surface charges. Water Research, 37, 2458–2466. doi:10.1016/S0043-1354(03)00021-6.

    Article  CAS  Google Scholar 

  • Nghiem, L. D., & Schäfer, A. I. (2002). Adsorption and transport of trace contaminant estrone in NF/RO membranes. Environmental Engineering Science, 19(6), 441–451. doi:10.1089/109287502320963427.

    Article  CAS  Google Scholar 

  • Panter, G. H., Thompson, R. S., Beresford, N., & Sumpter, J. P. (1999). Transformation of a non-oestrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere, 38, 3579–3596. doi:10.1016/S0045-6535(98)00572-4.

    Article  CAS  Google Scholar 

  • Preziosi, P. (1998). Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment endocrine disrupters as environmental signalers: An introduction. Pure and Applied Chemistry, 70, 1617–1631. doi:10.1351/pac199870091617.

    Article  CAS  Google Scholar 

  • Purdom, C. E., Hardiman, P. A., Bye, V. J., Eno, N. C., Tyler, C. R., & Sumpter, J. P. (1994). Oestrogenic effects of effluents from sewage treatment works. Chemistry and Ecology, 8, 275–285. doi:10.1080/02757549408038554.

    Article  CAS  Google Scholar 

  • Rajpert-De-Meyts, E., & Skakkeboek, N. E. (1993). The possible role of sex hormones in the development of testicular cancer. European Urology, 23, 54–61.

    CAS  Google Scholar 

  • Reddy, S., Iden, C. R., & Brownawell, B. J. (2005). Analysis of steroid conjugates in sewage influent and effluent by liquid chromatography–tandem mass spectrometry. Analytical Chemistry, 77, 7032–7038. doi:10.1021/ac050699x.

    Article  CAS  Google Scholar 

  • Routledge, E. J., Sheahan, D., Desbrow, C., Brighty, G. C., Waldock, M., & Sumpter, J. P. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science & Technology, 32, 1559–1565. doi:10.1021/es970796a.

    Article  CAS  Google Scholar 

  • Schäfer, A. I., Mastrup, M., & Venkatesh, S. (2001). Estrogen removal using the MIEX and microfiltration hybrid process in wastewater recycling. Membrane bioreactors and hybrid systems workshop in Sydney, Australia (AWA).

  • Sirianuntapiboon, S., & Ungkaprasatcha, O. (2007). Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems. Bioresource Technology, 98, 2749–2757. doi:10.1016/j.biortech.2006.09.032.

    Article  CAS  Google Scholar 

  • Sirianuntapiboon, S., Sadahiro, O., & Salee, P. (2007). Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes. Journal of Environmental Management, 85, 162–170. doi:10.1016/j.jenvman.2006.09.001.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1999). Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In D. L. Sparks (Ed.), Soil physical chemistry (pp. 135–191). Boca Raton: CRC.

    Google Scholar 

  • Ternes, T. A., Andersen, H., Gilberg, D., & Bonerz, M. (2002). Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry, 74, 3498–3504. doi:10.1021/ac015717z.

    Article  CAS  Google Scholar 

  • Turner, L. J., & Kramer, J. R. (1991). Sulfate ion binding on goethite and ematite. Soil Science, 152, 226–230. doi:10.1097/00010694-199109000-00010.

    Article  CAS  Google Scholar 

  • UK Environment Agency (UKEA). (1997). The identification and assessment of oestrogenic substances in sewage treatment works effluents. Rotherham: Environment Agency.

    Google Scholar 

  • Yu, Z. Q., Xiao, B. H., Huang, W. L., & Peng, P. (2004). Sorption of steroid estrogens to soils and sediments. Environmental Toxicology and Chemistry, 23, 531–539. doi:10.1897/03-192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Hu, J. Adsorption of Natural Estrogens and Their Conjugates by Activated Sludge. Water Air Soil Pollut 206, 251–261 (2010). https://doi.org/10.1007/s11270-009-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0102-0

Keywords

Navigation