Skip to main content
Log in

An Experimental Study of the Diesel Biodegradation Effects on Soil Biogeophysical Parameters

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The purpose of this study was to understand the dynamic conditions of soil/organic mixtures in order to contribute to the study of remediation processes at hydrocarbon spill sites. Induced polarization (IP) and physical, chemical, and microbiological parameters for uncontaminated and artificially contaminated soil samples with diesel oil were evaluated under controlled conditions (constant temperature and soil moisture) during a period of 12 months. In contaminated samples, the resistivity and IP parameters (chargeability and polarizability) decreased during 8 months and remained relatively stable between 8 and 12 months. The observed reduction on resistivity and IP parameters was related to the increase on the granular aggregation of the soil and a decrease on total porosity, caused by diesel-degrading microorganisms. The behavior of the IP parameters observed after 8 months can be explained by a reduction in the microbial activity and, consequently, a decrease of the degradation rate of diesel. In the studied loamy soil with high content of organic matter (96.16 g/kg), the results demonstrate that IP time domain measurements can be used in the evaluation of the evolution of the hydrocarbon degradation even when the concentration is not very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Aal, G. Z., Atekwana, E., Slater, L. D., & Atekwana, E. A. (2004). Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophysical Research Letters, 31, L12505. doi:10.1029/2004GL020030.

    Article  Google Scholar 

  • Abdel Aal, G. Z., Slater, L. D., & Atekwana, E. (2006). Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics, 71, H13–H24. doi:10.1190/1.2187760.

    Article  Google Scholar 

  • Apparao, A. (1997). Development in geoelectrical methods. Rotterdam: A. A. Balkema.

    Google Scholar 

  • Asquith, G. B., & Gibson, C. R. (1982). Basic well log analysis for geologists. Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Atekwana, E., Werkema, D. D., Duris, J. W., Rossbach, S., Atekwana, E. A., Sauck, W. A., et al. (2004). In-situ apparent conductivity measurements and microbial population distribution at a hydrocarbon-contaminated site. Geophysics, 69, 56–63. doi:10.1190/1.1649375.

    Article  Google Scholar 

  • Atekwana, E. A., Atekwana, E., Legall, F. D., & Krishnamurthy, R. V. (2005). Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. Journal of Contaminant Hydrology, 80, 149–167. doi:10.1016/j.jconhyd.2005.06.009.

    Article  CAS  Google Scholar 

  • Atlas, R. M., Horonitz, A., Krichevsky, M., & Bej, A. K. (1991). Response of microbial populations to environmental disturbance. Microbial Ecology, 22, 287–338. doi:10.1007/BF02540227.

    Article  Google Scholar 

  • Balba, M. T., Al-Awadhi, N., & Al-Daher, R. (1998). Bioremediation of oil-contaminated soil: Microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 32, 155–164. doi:10.1016/S0167-7012(98)00020-7.

    Article  CAS  Google Scholar 

  • Bennett, P. C., Hiebert, F. K., & Choi, W. J. (1996). Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chemical Geology, 132, 45–53. doi:10.1016/S0009-2541(96)00040-X.

    Article  CAS  Google Scholar 

  • Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping ground-water contamination using dc resistivity and VLF geophysical methods—a case study. Geophysics, 62, 80–86. doi:10.1190/1.1444148.

    Article  Google Scholar 

  • Bertin, J., & Loeb, J. (1974). Traitement “à la main” et sur ordinateur des transistoires en polarization provoquée. Geophysical Prospecting, 22, 93–106. doi:10.1111/j.1365-2478.1974.tb00067.x.

    Article  Google Scholar 

  • Bertin, J., & Loeb, J. (1976). Experimental and theoretical aspects of induced polarization (Vol. 1, p. 250). Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils (14th ed., p. 965). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Budzinski, H., Raymond, N., Nadalig, T., Gilewicz, M., Garrigues, P., Bertrand, J. C., et al. (1998). Aerobic biodegradation of alkylated aromatic hydrocarbons by a bacterial community. Organic Geochemistry, 28, 337–348. doi:10.1016/S0146-6380(98)00002-3.

    Article  CAS  Google Scholar 

  • Cassidy, D. P., Werkema, D. D., Jr., Sauck, W., Atekwana, E., Rossbach, S., & Duris, J. (2001). The effects of LNAPL biodegradation products on electrical conductivity measurements. Journal of Environmental & Engineering Geophysics, 6, 47–52.

    Article  Google Scholar 

  • Degans, B. P. (1997). Macro-aggregation of soils by biological binding mechanisms and the factors affecting these: A review. Australian Journal of Soil Research, 35, 431–459. doi:10.1071/S96016.

    Article  Google Scholar 

  • Del Panno, M. T., Morelli, I. M., Engelen, B., & Berthe-Corti, L. (2005). Effect of petrochemical sludge concentrations on microbial communities during soil bioremediation. FEMS Microbiology Ecology, 53, 305–316. doi:10.1016/j.femsec.2005.01.014.

    Article  Google Scholar 

  • Forster, J. C. (1998). Soil physical analysis. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 105–121). London: Academic.

    Google Scholar 

  • Grumman, D. L., & Daniels, J. J. (1995). Experiments on the detection of organic contaminants in the vadose zone. Journal of Environmental & Engineering Geophysics, 1, 31–38.

    Article  Google Scholar 

  • Hallof, P. G. (1967). An appraisal of the variable frequency IP method after twelve years of application. Symposium on induced polarization (p. 13). Berkeley: University of California.

    Google Scholar 

  • Hiebert, F. K., Bennet, P. C., Folk, R. L., & Pope, S. R. (1995). Enhanced mineral alteration by petroleum biodegradation in a freshwater aquifer. In R. E. Hinchee, et al. (Eds.), Microbial processes for bioremediation (pp. 297–308). Columbus: Battelle.

    Google Scholar 

  • Keevil, N. B., & Ward, S. H. (1962). Electrolyte activity: Its effect on induced polarization. Geophysics, 27, 677–690. doi:10.1190/1.1439079.

    Article  CAS  Google Scholar 

  • Klein, J. D., & Sill, W. R. (1982). Electrical properties of artificial clay-bearing sandstones. Geophysics, 47, 1593–1605. doi:10.1190/1.1441310.

    Article  Google Scholar 

  • Marshall, D. J., & Madden, T. R. (1959). Induced polarization, a study of its causes. Geophysics, 24, 790–816. doi:10.1190/1.1438659.

    Article  Google Scholar 

  • Martienssen, M., Reichel, O., & Schirmer, M. (2003). Use of surfactants to improve the biological degradability of petroleum hydrocarbons. Chemie Ingenieur Technik, 75, 1749–1755. doi:10.1002/cite.200300056.

    Article  CAS  Google Scholar 

  • Martinho, E., Almeida, F., & Senos Matias, M. J. (2006). An experimental study of organic pollutant effects on time domain induced polarization measurements. Journal of Applied Geophysics, 60, 27–40. doi:10.1016/j.jappgeo.2005.11.003.

    Article  Google Scholar 

  • McMahon, P. B., Vroblesky, D. A., Bradley, P. M., Chapelle, F. H., & Gullet, C. D. (1995). Evidence for enhanced mineral dissolution on organic acid-rich shallow ground water. Ground Water, 33, 207–216. doi:10.1111/j.1745-6584.1995.tb00275.x. Abstract–Elsevier BIOBASE |$ Order Document.

    Article  CAS  Google Scholar 

  • Monier-Williams, M. (1995). Properties of light non-aqueous phase liquids and detection using commonly applied shallow sensing geophysical techniques. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP’95), Orlando, FL, pp 1–13.

  • Ntarlagiannis, D., & Ferguson, A. (2009). SIP response of artificial biofilms. Geophysics, 74, A1–A5. doi:10.1190/1.3031514.

    Article  Google Scholar 

  • Ntarlagiannis, D., Williams, K. H., Slater, L., & Hubbard, S. (2005). Low-frequency electrical response to microbial induced sulfide precipitation. Journal of Geophysical Research, 110, G0.

    Article  Google Scholar 

  • Oades, J. M., & Jenkinson, D. S. (1979). Adenosine triphosphate content of the soil microbial biomass. Soil Biology & Biochemistry, 11, 201–204. doi:10.1016/0038-0717(79)90101-9.

    Article  CAS  Google Scholar 

  • Oliveira, A., & Pampulha, M. E. (2006). Effects of long-term heavy metal contamination on soil microbial characteristics. Journal of Bioscience and Bioengineering, 102, 157–161. doi:10.1263/jbb.102.157.

    Article  CAS  Google Scholar 

  • Orellana, E. (1982). Prospeccion Geoelectrica en Corriente Contínua (p. 278). Madrid: Paraninfo.

    Google Scholar 

  • Póvoas, I., & Barral, M. F. (1992). Métodos de Análise de Solos. Instituto de Investigação Científica Tropical, Série Ciências Agrárias (Vol. 10). Taguatinga: Secretaria de Estado da Ciência e Tecnologia.

    Google Scholar 

  • Robert, M., & Tessier, D. (1992). Incipient weathering: Some new concepts on weathering, clay formation and organization. In I. P. Martin & W. Chesworth (Eds.), Weathering, soils & paleosols. Developments in earth surface processes (Vol. 2, pp. 71–105). Amsterdam: Elsevier.

    Google Scholar 

  • Sauck, W. A. (2000). A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. Journal of Applied Geophysics, 44, 151–165. doi:10.1016/S0926-9851(99)00021-X.

    Article  Google Scholar 

  • Sauck, W. A., Atekwana, E. A., & Nash, M. S. (1998). Elevated conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. Journal of Environmental & Engineering Geophysics, 2, 203–212.

    Google Scholar 

  • Sharma, P. V. (1997). Environmental and engineering geophysics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79, 7–31. doi:10.1016/j.still.2004.03.008.

    Article  Google Scholar 

  • Slater, L., Ntarlagiannis, D., Personna, Y. R., & Hubbard, S. (2007). Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophysical Research Letters, 34, L21404. doi:10.1029/2007GL031840.

    Article  Google Scholar 

  • Song, H. G., & Bartha, R. (1990). Effect of jet fuel spills on the microbial community of soil. Applied and Environmental Microbiology, 56, 646–651.

    CAS  Google Scholar 

  • Song, L., & Vozoff, K. (1985). The complex resistivity spectra of models consisting of two polarizable media of different intrinsic properties. Geophysical Prospecting, 33, 1029–1062. doi:10.1111/j.1365-2478.1985.tb00796.x.

    Article  Google Scholar 

  • Sumi, F. (1961). The induced polarization method in ore investigation. Geophysical Prospecting, 9, 459–477. doi:10.1111/j.1365-2478.1961.tb01524.x.

    Article  Google Scholar 

  • Sumner, J. S. (1976). Principles of induced polarization for geophysical exploration (p. 277). Amsterdam: Elsevier.

    Google Scholar 

  • Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page (Ed.), Methods of soil analysis, part 2. Agronomy monograph (Vol. 9, pp. 903–904). Madison: American Society of Agronomy.

    Google Scholar 

  • Tate, K. R., & Jenkinsen, D. S. (1982). Adenosine triphosphate measurement in soil: An improved method. Soil Biology & Biochemistry, 14, 331–335. doi:10.1016/0038-0717(82)90002-5.

    Article  CAS  Google Scholar 

  • Tazaki, K. (2006). Clays, microorganisms, and biomineralization. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Handbook of clay science. Developments in clay science (Vol. 1, pp. 477–497). Amsterdam: Elsevier.

    Google Scholar 

  • Titov, K., Komarov, V., Tarasov, V., & Levitski, A. (2002). Theoretical and experimental study of time-domain-induced polarization in water-saturated sands. Journal of Applied Geophysics, 50, 417–433. doi:10.1016/S0926-9851(02)00168-4.

    Article  Google Scholar 

  • Vanhala, H. (1997). Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method. Geophysical Prospecting, 45, 303–326. doi:10.1046/j.1365-2478.1997.00338.x.

    Article  Google Scholar 

  • Vanhala, H., Soininen, H., & Kukkonen, I. (1992). Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics, 57, 1014–1017. doi:10.1190/1.1443312.

    Article  Google Scholar 

  • Vinegar, H. J., & Waxman, M. H. (1984). Induced polarization of shaly sands. Geophysics, 48, 1267–1287. doi:10.1190/1.1441755.

    Article  Google Scholar 

Download references

Acknowledgements

This work was developed under the POCI/ECM/58768/2004 project and funded by FCT, POCI 2010 Program, and FEDER (European Communitarian Funds). The authors wish to thank to Galp Energy (Portugal) for the diesel oil used in contamination of the samples and Prof. A. Maurício for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Martinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinho, E., Abreu, M.M., Pampulha, M.E. et al. An Experimental Study of the Diesel Biodegradation Effects on Soil Biogeophysical Parameters. Water Air Soil Pollut 206, 139–154 (2010). https://doi.org/10.1007/s11270-009-0092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0092-y

Keywords

Navigation