Skip to main content
Log in

Apportionment of Sources to Determine Vehicular Emission Factors of BTEX in Kolkata, India

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A yearlong (December 2003 to February 2005) monitoring program was undertaken for urban roadside measurement of benzene, toluene, ethyl benzene, m- and p-xylene, and o-xylene (BTEX) at three different sites of Kolkata, India. The concentrations of monoaromatic hydrocarbons were found to be sufficiently high. Chemical mass balance model was applied to identify the sources and estimate their percentage contribution. Vehicular exhaust emission was found to be the dominant source of the target compounds and contributed 38.8–44.8% toward total volatile organic compound (VOC) level. Assuming that the vehicular exhaust fraction of the ambient BTEX level was due to the vehicular activity in the adjacent road of the monitoring site, vehicular emission factors for individual VOCs were estimated by running CALINE4 dispersion model in an inverse way. The total emission factor, average for all vehicles, was found to be in the range of 9.1 to 43.1 mg vehicle−1 km−1 for BTEX. From the measured vehicular composition during sampling, the category-wise emission factors for light-duty vehicles (LDVs), medium-duty (MDVs), and heavy-duty vehicles (HDVs), were also estimated by constrained nonlinear regression analysis. The emission factor of benzene for heavy, medium, and light vehicles was found to be 13.4, 21.0, and 31.2 mg vehicle−1 km−1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  • Abu-Allaban, M., Gertler, A. W., & Lowenthal, D. H. (2002). A preliminary apportionment of the sources of ambient PM10; PM2:5; and VOCs in Cairo. Atmospheric Environment, 36, 5549–5557. doi:10.1016/S1352-2310(02)00662-3.

    Article  CAS  Google Scholar 

  • ADB. (2005). Asian Development Bank. Strengthening Environmental Management at State Level (Cluster); Final report, Volume V: Air Quality Management.

  • Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34, 2063–2101. doi:10.1016/S1352-2310(99)00460-4.

    Article  CAS  Google Scholar 

  • Borbon, A., Fontaine, H., Locoge, N., Veillerot, M., & Galloo, J. C. (2003). Developing receptor-oriented methods for nonmethane hydrocarbon characterisation in urban air—Part I: Source identification. Atmospheric Environment, 37, 4051–4064. doi:10.1016/S1352-2310(03)00525-9.

    Article  CAS  Google Scholar 

  • Bose, R. K. (1998). Automotive energy use and emissions control: A simulation model to analyse transport strategies for Indian metropolises. Energy Policy, 26(13), 1001–1016. doi:10.1016/S0301-4215(98)00045-7.

    Article  Google Scholar 

  • Buzcu, B., & Fraser, M. P. (2006). Source identification and apportionment of volatile organic compounds in Houston, TX. Atmospheric Environment, 40, 2385–2400. doi:10.1016/j.atmosenv.2005.12.020.

    Article  CAS  Google Scholar 

  • CPCB. (1989). Assessment of vehicular pollution in metropolitan cities—Part I—Abridged report Control of urban pollution series: CUPS/17/1988-89 New Delhi: Central Pollution Control Board.

  • Caltrans. (1989). CALINE4—A Dispersion Model for Predicting Air Pollutant Concentrations Near Roadways, Final Report prepared by the Caltrans Division of New Technology and Research (Report No. FHWA/CA/TL-84/15).

  • Fujita, E. M. (2001). Hydrocarbon source apportionment for the 1996 Paso del Norte Ozone Study. The Science of the Total Environment, 276, 171–184. doi:10.1016/S0048-9697(01)00778-1.

    Article  CAS  Google Scholar 

  • Fujita, E. M., Watson, J. G., Chow, J. C., & Lu, Z. (1994). Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California Air Quality Study. Environmental Science & Technology, 28, 1633–1649. doi:10.1021/es00058a016.

    Article  CAS  Google Scholar 

  • Gramotnev, G., Brown, R., Ristovski, Z., Hitchins, J., & Morawska, M. (2003). Determination of average emission factors for vehicles on a busy road. Atmospheric Environment, 37, 465–474. doi:10.1016/S1352-2310(02)00923-8.

    Article  CAS  Google Scholar 

  • Heeb, N. V., Forss, A. M., & Bach, C. (1999). Fast and quantitative measurement of benzene, toluene and C2-benzenes in automotive exhaust during transient engine operation with and without catalytic exhaust gas treatment. Atmospheric Environment, 33, 205–215. doi:10.1016/S1352-2310(98)00149-6.

    Article  CAS  Google Scholar 

  • Hellén, H., Hakola, H., & Laurila, T. (2003). Determination of source contributions of NMHCs in Helsinki (60°N, 25°E) using chemical mass balance and the UNMIX multivariate receptor models. Atmospheric Environment, 37, 1413–1424. doi:10.1016/S1352-2310(02)01049-X.

    Article  Google Scholar 

  • Ho, K. F., Lee, S. C., & Chiu, G. (2002). Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment, 36, 57–65. doi:10.1016/S1352-2310(01)00475-7.

    Article  CAS  Google Scholar 

  • Jorquera, H., & Rappengluck, B. (2004). Receptor modeling of ambient VOC at Santiago, Chile. Atmospheric Environment, 38, 4243–4263. doi:10.1016/j.atmosenv.2004.04.030.

    Article  CAS  Google Scholar 

  • Kandlikar, M., & Ramachandran, G. (2000). The causes and consequences of particulate air pollution in urban India: A synthesis of the science. Annual Review of Energy and Environment, 25, 629–684.

    Article  Google Scholar 

  • Kawashima, H., Minami, S., Hanai, Y., & Fushimi, A. (2006). Volatile organic compound emission factors from roadside measurements. Atmospheric Environment, 40, 2301–2312. doi:10.1016/j.atmosenv.2005.11.044.

    Article  CAS  Google Scholar 

  • Lai, C. H., Chen, K. S., Ho, Y. T., Peng, Y. P., & Chou, Y. M. (2005). Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan. Atmospheric Environment, 39(25), 4543–4559. doi:10.1016/j.atmosenv.2005.03.044.

    Article  CAS  Google Scholar 

  • Liu, Y., Shao, M., Zhang, J., Fu, L. L., & Lu, S. H. (2005). Distributions and source apportionment of ambient volatile organic compounds in Beijing, China. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40(10), 1843–1860. doi:10.1080/10934520500182842.

    Article  CAS  Google Scholar 

  • Liu, Y., Shao, M., Lu, S., Chang, C. C., Wang, J. L., & Fu, L. (2008). Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmospheric Environment (in press). doi:10.1016/j.atmosenv.2008.02.027

  • Miller, S. M., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36, 3629–3641. doi:10.1016/S1352-2310(02)00279-0.

    Article  CAS  Google Scholar 

  • NIOSH. (1997). Hydrocarbons, Aromatic: Method 1501, Manual of Analytical methods, National Institute of Occupational safety and Health, Cincinnati.

  • Reisell, A., MacDonald, C., Roberts, P., & Arey, J. (2003). Characterization of biogenic volatile organic compounds and meteorology at Azusa during the SCOS97-NARSTO. Atmospheric Environment, 37(2), 181–196. doi:10.1016/S1352-2310(03)00390-X.

    Article  Google Scholar 

  • Som, D., Dutta, C., Chatterjee, A., Mallick, D., Jana, T. K., & Sen, S. (2007). Studies on commuters’ exposure to BTEX in passenger cars in Kolkata, India. The Science of the Total Environment, 372, 426–432. doi:10.1016/j.scitotenv.2006.09.025.

    Article  CAS  Google Scholar 

  • Srivastava, A. (2004). Source apportionment of ambient VOCS in Mumbai city. Atmospheric Environment, 38, 6829–6843. doi:10.1016/j.atmosenv.2004.09.009.

    Article  CAS  Google Scholar 

  • Srivastava, A., Sengupta, B., & Dutta, S. A. (2005). Source apportionment of ambient VOCs in Delhi City. The Science of the Total Environment, 343, 207–220. doi:10.1016/j.scitotenv.2004.10.008.

    Article  CAS  Google Scholar 

  • TERI. (2001). Review of past and on-going work on urban air quality in India New Delhi: Tata Energy Research Institute. [TERI Project Report No. 2001EE41].

  • Tang, T., Claggett, M., Byun, J., Roberts, M., & Granell, J. (2004). MOBILE 6.2 Air Toxic Emission Factor Modeling: A Trend and Sensitivity Analysis U.S. Environmental Protection Agency, available at www.epa.gov/ttn/chief/conference/ei13/mobile/tang.pdf.

  • USEPA.CMB 8.2 Users Manual. (2004). EPA-452/R-04-011. US. Environmental Protection Agency Office of Air Quality Planning & Standards Emissions, Monitoring & Analysis Division Air Quality Modeling Group.

  • Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35, 567–1584.

    Google Scholar 

  • Willis, R. D. (2000). Workshop on UNMIX and PMF as applied to PM2.5. US Environmental Protection Agency, Report No. EPA/600/A-00/048, Research Triangle Park, NC.

  • World Bank. (2005). For a breath of fresh air: Ten years of progress and challenges in urban air quality management in India 1993—2002.

Download references

Acknowledgement

The Authors’ sincerest thanks are due to Dr. Hiroto Kawashima, Department of Management Science and Engineering, Akita Prefectural University for his valuable advices for emission factor calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar (née Som), D., Mukherjee, A.K. & Sen, S. Apportionment of Sources to Determine Vehicular Emission Factors of BTEX in Kolkata, India. Water Air Soil Pollut 201, 379–388 (2009). https://doi.org/10.1007/s11270-008-9951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9951-1

Keywords

Navigation