Skip to main content
Log in

Characterization of E1 Kraft Mill Effluent by Toxicity Identification Evaluation Methodology

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In order to recover and reuse water in the Kraft mill process, evaluation of separate streams is required to identify toxic compounds or microcontaminants. The stage E1 Kraft effluent, corresponding to the first extraction step of the bleaching Kraft mill process, provides the main toxic compounds found in the final process effluent. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of the E1 Kraft effluent. To distinguish the most important toxic compounds, a physicochemical characterization and Phase I of the TIE procedure were performed. The acute toxic effect of the E1 Kraft effluent and treated fraction was performed on Daphnia magna. Results show that untreated E1 Kraft effluent exerts an acute toxic effect on D. magna (24 h LC50 = 27.6%), where the E1 Kraft effluent is characterized by pH 10.5, chemical organic demand (COD) 1,348.8 mg/l, and biological organic demand (BOD5) 397.5 mg/l, while total phenolic compounds and color are 853.7 mg/l and 0.204 1 × 1 cm, respectively. Additionally, Cu+2 (0.51 mg/l) and Fe+2 (0.64 mg/l) were detected. With respect to different treatments, our results indicate that activated carbon, anionic and cationic exchange treatments were able to reduce more that 45% of E1 Kraft effluent’s acute toxicity and that the ethylenediaminetetraacetic acid treatment was able to reduce the E1 Kraft effluent’s acute toxicity to around 75% and the Cu+2 concentration to 0.019 mg/l. Moreover, specific analysis of heavy metals and organic compounds by GC-MS show that the main compound responsible for the toxicity was Cu+2, whose tolerance level on D. magna of the 0.12 mg/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali, M., & Sreekrishnan, T. (2001). Aquatic toxicity from pulp and paper mill effluents. Advances in Environmental Research, 5, 175–196. doi:10.1016/S1093-0191(00)00055-1.

    Article  CAS  Google Scholar 

  • Anderson, P. D., Weber, L. J. (1975). The toxicity to aquatic populations of mixtures containing heavy metals. Proceedings International Conference on Heavy Metals in the Environment, Toronto, Ontario, Canada; 1975, October 27–31; p 933–953.

  • APHA-AWWA-WPCF. (1985). Standard Methods for Examination of Water and Wastewater. 16th Ed. Washington.

  • Barta, J., Wane, G., Herstad-Svard, S., Lundgren, P., Johansson, N., Edwards, L., et al. (1998). Partial closure in modern bleaching sequences. Tappi Journal, 81, 136–140.

    Google Scholar 

  • Bertazzoli, B., & Pelegrini, R. (2002). Decoloration and degradation of organic compounds by photoelectrochemical process. Quimica Nova, 25, 477–482. doi:10.1590/S0100-40422002000300022.

    CAS  Google Scholar 

  • Bossuyt, T., & Janssen, C. (2005). Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environmental Pollution, 136, 145–154. doi:10.1016/j.envpol.2004.11.023.

    Article  CAS  Google Scholar 

  • Carvalho, C., & Fernandes, M. (2006). Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture (Amsterdam, Netherlands), 251, 109–117. doi:10.1016/j.aquaculture.2005.05.018.

    Article  CAS  Google Scholar 

  • Çeçen, F. (2003). The use of UV-VIS measurements in the determination of biological treatability of pulp bleaching effluents; 7th International Water Association Symposium on Forest Industry Wastewaters: Seattle, USA.

  • Chamorro, S., Xavier, C., & Vidal, G. (2005). Behavior of aromatic compounds contained in the kraft mill effluents measurements by UV-VIS. Biotechnology Progress, 21, 1567–1571. doi:10.1021/bp040040x.

    Article  CAS  Google Scholar 

  • Cook, R., & Sikes, J. (1990). Environmental effects of bleaching Kraft mill effluents. Appita, 43, 67–76.

    Google Scholar 

  • Cooman, K., Fajardo, M., Nieto, J., Bomhardt, C., & Vidal, G. (2003). Tannery wastewater characterization and toxicity effects on Daphnia spp. Environmental Toxicology, 18, 45–51. doi:10.1002/tox.10094.

    Article  CAS  Google Scholar 

  • De Schamphelaere, K., Heijerick, D., & Janssen, C. (2002). Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 133(1-2), 243–258. doi:10.1016/S1532-0456(02)00087-X.

    Article  Google Scholar 

  • Diez, M., Castillo, G., Aguilar, L., Vidal, G., & Mora, M. (2002). Operational factors and nutrient effects on activated sludge treatment of Pinus radiata kraft mill wastewater. Bioresource Technology, 83, 131–138. doi:10.1016/S0960-8524(01)00204-8.

    Article  CAS  Google Scholar 

  • Eklund, B., Bruno, E., Lithner, G., & Borg, H. (2002). Use of ethylenediaminetetraacetic acid in pulp mills and effects on metal mobility and primary production. Environmental Toxicology and Chemistry, 21, 1040–1051. doi:10.1897/1551-5028(2002)021<1040:UOEAIP>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Field, L., Kortekaas, S., & Lettinga, G. (1989). The tannin theory of methanogenic toxicity. Biological waste, 29, 241–262.

    Article  CAS  Google Scholar 

  • Freire, R. S., Kubota, L. T., & Durán, N. (2001). Remediation and toxicity removal from Kraft E1 paper mill effluent by ozonization. Environmental Technology, 22, 897–904. doi:10.1080/09593332208618224.

    Article  CAS  Google Scholar 

  • Finney, D. J. (1971). Probit analysis p. 333. Cambridge: Cambridge University Press.

    Google Scholar 

  • Finney, D. J. (1978). Statistical method in biological assay p. 508. London: Charles Griffin & Co. Ltd.

    Google Scholar 

  • Giarratano, E., Amin, O., Esteves, J., Gil, M.(1998). Heavy metals toxicity on Exosphaeroma gigas isotope, in the Beagle Chanel (Tierra del Fuego). Technical report, p. 7.

  • Gu, Y. X., & Edwards, L. (2004). Prediction of metals distribution in mill processes, Part 3 of 3: NPE management in krafy chemical recovery. Tappi Journal, 3, 9–15.

    CAS  Google Scholar 

  • Gu, Y. X., Mainmberg, B., & Edwards, L. (2004). Prediction of metals distribution in mill processes, Part 1: Metals equilibrium model. Tappi Journal, 3, 26–32.

    CAS  Google Scholar 

  • Kim, K., Gun, Y., Sang, L., & Kim, D. (2006). Combined toxicity of copper and phenol derivatives to Daphnia magna: Effect of complexation reaction. Environment International, 32, 487–492. doi:10.1016/j.envint.2005.11.002.

    Article  CAS  Google Scholar 

  • Liver, S. F., & Hall, E. R. (1996). Interactions of resin acids with aerobic and anaerobic biomass—I. Degradation by non-acclimated inocula. Water Research, 30, 663–671. doi:10.1016/0043-1354(95)00215-4.

    Article  CAS  Google Scholar 

  • Milam, C., & Farris, J. (1998). Risk identification associated with iron-dominated mine discharges and their effect upon freshwater bivalves. Environmental Toxicology and Chemistry, 17, 1611–1619. doi:10.1897/1551-5028(1998)017<1611:RIAWID>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Milam, C., Farris, J., Dwyer, F., & Hardesty, D. (2005). Acute toxicity of six freshwater mussel species (Glochidia) to six chemicals: Implications for daphnids and Utterbackia imbecillis as surrogates for protection of freshwater mussels (Unionidae). Archives of Environmental Contamination and Toxicology, 48, 166–173. doi:10.1007/s00244-003-3125-3.

    Article  CAS  Google Scholar 

  • Moraes, S. G., Duran, N., & Freire, R. S. (2006). Remediation of Kraft E1 and black liquor effluent by biological and chemical processes. Environmental Chemistry Letters, 4, 87–91. doi:10.1007/s10311-006-0039-0.

    Article  CAS  Google Scholar 

  • Mount, D., & Hockett, R. (2000). Use of Toxicity Identification Evaluation methods to characterize, identify and confirm hexavalent chromium toxicity in an industrial effluent. Water Research, 34, 1379–1385. doi:10.1016/S0043-1354(99)00271-7.

    Article  CAS  Google Scholar 

  • Norberg-King, T. J., Mount, D. I., Durhan, E. J., Ankley, G. T., Burkhard, L. P., Amato, J. R., et al. (1991). Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures for samples exhibiting acute and chronic toxicity, EPA/600/6-91/003. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Ortega-Clemente, A., Estrada-Vazquez, C., Rinderknecht-Seijas, N., Caffarel-Mendez, S., Esparza-García, F., & Poggi-Varaldo, H. M. (2006). Integrated biological treatment of wastewater from the Kraft cellulose industry. Ingeniería Química, 29, 74–87.

    Google Scholar 

  • Oviedo, C., & Rodríguez, J. (2003). EDTA: the chelating agent under environmental scrutiny. Quimica Nova, 26, 901–905. doi:10.1590/S0100-40422003000600020.

    CAS  Google Scholar 

  • Pokhrel, D., & Viraraghavan, (2004). Treatment of pulp and paper mill wastewater: a review. The Science of the Total Environment, 333, 37–58. doi:10.1016/j.scitotenv.2004.05.017.

    Article  CAS  Google Scholar 

  • Rintala, J., & Lepistö, (1992). Anaerobic treatment of thermomechanical pulping whitewater at 35–70°C. Water Research, 26, 1297–1305. doi:10.1016/0043-1354(92)90124-M.

    Article  CAS  Google Scholar 

  • Rosemarin, A., Lehtinen, A., Notini, M., & Jan Mattson, (1994). Effects of pulp mill chlorate on baltic sea algae. Environmental Pollution, 85, 3–13. doi:10.1016/0269-7491(94)90233-X.

    Article  CAS  Google Scholar 

  • Santote, R., Di Toro, D., Paquin, P., Allen, H., & Meyer, J. (2001). Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and Chemistry, 20, 2397–2402. doi:10.1897/1551-5028(2001)020<2397:BLMOTA>2.0.CO;2.

    Article  Google Scholar 

  • Soucek, D., Cherry, D., & Trent, G. (2000). Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett’s Creek watershed, Virginia, USA. Archives of Environmental Contamination and Toxicology, 38, 305–310. doi:10.1007/s002449910040.

    Article  CAS  Google Scholar 

  • Thompson, G., Swain, J., & Forster, M. (2001). The treatment of pulp and paper mill effluent: a review. Bioresource Technology, 77, 275–286. doi:10.1016/S0960-8524(00)00060-2.

    Article  CAS  Google Scholar 

  • USEPA (1993). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-600/4-90-027F. Cincinnati, OH: U.S. Environmental Protection Agency.

    Google Scholar 

  • Van Sprang, P. A., & Janssen, C. R. (1997). Identification and confirmation of ammonia toxicity in contaminated sediments using a modified toxicity identification evaluation approach. Environmental Toxicology and Chemistry, 16, 2501–2507. doi:10.1897/1551-5028(1997)016<2501:IACOAT>2.3.CO;2.

    Article  Google Scholar 

  • Van Wijk, D., & Hutchinson, T. (1995). The ecotoxicology of chlorate to aquatic organisms: a critical review. Ecotoxicology and Environmental Safety, 32, 244–253. doi:10.1006/eesa.1995.1110.

    Article  Google Scholar 

  • Vidal, G., Videla, S., & Diez, M. C. (2001). Molecular weight distribution of Pinus radiata kraft mill wastewater treated by anaerobic digestion. Bioresource Technology, 77, 183–191. doi:10.1016/S0960-8524(00)00141-3.

    Article  CAS  Google Scholar 

  • Villavicencio, G., Urrestarazu, P., Carvajal, C., De Schamphelaere, K., Janssen, C., Torres, J., et al. (2005). Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile. Environmental Toxicology and Chemistry, 24, 1287–1299. doi:10.1897/04-095R.1.

    Article  CAS  Google Scholar 

  • Walker, J. (1989). Effect of chemical on microorganisms. Journal WPCF, 61, 1077–1097.

    Google Scholar 

  • Yeber, M. C., Oñate, P. K., & Vidal, G. (2007). Decolorization of kraft bleaching effluent by advanced oxidation processes using copper (II) as electrons acceptor. Environmental Science & Technology, 41(7), 2510–2514. doi:10.1021/es062544s.

    Article  CAS  Google Scholar 

  • Yu, Y., Kong, F., Wang, M., Qian, L., & Shi, X. (2007). Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicology and Environmental Safety, 66, 49–56. doi:10.1016/j.ecoenv.2005.10.014.

    Article  CAS  Google Scholar 

  • Zhang, Q., & Chuang, K. (2001). Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Advances in Environmental Research, 3, 251–258. doi:10.1016/S1093-0191(00)00059-9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grant FONDECYT 1070509 and the FONDECYT 7080172 for the International Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, F., Chamorro, S., Yeber, M.C. et al. Characterization of E1 Kraft Mill Effluent by Toxicity Identification Evaluation Methodology. Water Air Soil Pollut 199, 183–190 (2009). https://doi.org/10.1007/s11270-008-9870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9870-1

Keywords

Navigation