Skip to main content
Log in

Factors that Influence the Transport of Bacillus cereus Spores through Sand

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The goal of this study is to clarify the surface-chemical and microphysical variables that influence bacterial spore transport through soil, thereby defining the factors that may affect spore transport velocity. Bacillus cereus spores were continuously monitored in a soil column under saturated conditions with experimental variations in soil grain size (0.359 and 0.718 mm), pH (7.2 and 8.5), and water flow rate (1.3 and 3.0 mL/min). Increasing soil grain size, flow rate, and pH resulted in enhanced spore movement. Spore transport increased 82% when soil grain size was doubled. An increase in effluent flow rate from 1.3 to 3.0 mL/min increased spore movement by 71%. An increase in pH increased spore transport by 53%. The increase in hydrodynamic forces resulting from the larger grain size soil and higher flow rate functioned to overcome the hydrophobic nature of the spore’s coat, and the interparticle bonding forces between the spore and soil particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley, W. M., Reilly, T. E., & Franke, O. L. (1999). Sustainability of groundwater resources. U.S. geological survey circular 1186. Denver: U.S. Geological Survey.

    Google Scholar 

  • Anderson, I., Sorokin, A., & Kapatral, V. (2005). Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiology Letters, 250, 175–184.

    Article  CAS  Google Scholar 

  • Arakawa, E. T., Lavrik, N. V., & Datskos, P. G. (2003). Detection of anthrax simulants with microcalorimetric spectroscopy: Bacillus subtilis and Bacillus cereus spores. Applied Optics, 42, 1757–1762.

    Article  Google Scholar 

  • Bales, R. C., Li, S., Maguire, K. M., Yahya, M. T., Gerba, C. P., & Harvey, R. W. (1995). Virus and bacteria transport in a sandy aquifer, Cape Cod, MA. Ground Water, 33, 653–661.

    Article  CAS  Google Scholar 

  • Craun, G. F., & Calderon, R. L. (1997). Microbial risks in groundwater systems: Epidemiology of waterborne outbreaks, in Under the Microscope: Examining microbes in groundwater. Denver, CO: American Water Works Research Foundation.

    Google Scholar 

  • DeFlaun, M. F., & Condee, C. W. (1997). Electrokinetic transport of bacteria. Journal of Hazardous Materials, 55, 263–277.

    Article  CAS  Google Scholar 

  • Gannon, J. T., Tan, Y., Baveye, P., & Alexander, M. (1991). Effect of sodium chloride on transport of bacteria in a saturated aquifer material. Applied Environmental Microbiology, 57, 2497–2501.

    CAS  Google Scholar 

  • Gerba, C. P., & Bales, R. C. (1990). Virus transport in the subsurface. In C. B. Fliermans, & T. C. Hazen (Eds.), Paper presented at the First International Symposium on Microbiology of the Deep Subsurface, Orlando, FL.

  • Husmark, U., & Ronner, U. (1990). Forces involved in adhesion of Bacillus cereus spores to surfaces under different environmental conditions. Journal of Applied Bacteriology, 69, 557–562.

    CAS  Google Scholar 

  • Husmark, U., & Ronner, U. (1992). The influence of hydrophobic, electrostatic and morphological properties on adhesion of Bacillus spores. Biofouling, 5, 335–344.

    Article  CAS  Google Scholar 

  • Huysman, F., & Verstraete, W. (1993). Water-facilitated transport of bacteria in unsaturated soil columns: influence of inoculation and irrigation methods. Soil Biology & Biochemistry, 25, 91–97.

    Article  Google Scholar 

  • Kinoshita, T., Bales, R. C., Yahya, M. T., & Gerba, C. P. (1993). Bacteria transport in a porous medium: retention of bacillus and pseudomonas on silica surfaces. Water Research, 27, 1295–1301.

    Article  Google Scholar 

  • Klavenes, A., Stalhiem, T., Sjovold, O., Josefsen, K., & Granum, P. E. (2002). Attachment of Bacillus cereus spores with and without appendages to stainless steel surfaces. Trans I Chem E, 80, 312–318.

    Google Scholar 

  • Lindqvist, R., & Bengtsson, G. (1995). Diffusion-limited and chemical-interaction-dependent sorption of soil bacteria and microspheres. Soil Biology & Biochemistry, 27, 941–948.

    Article  CAS  Google Scholar 

  • Loveland, J. P., Ryan, J. N., Amy, G. L., & Harvey, R. W. (1996). The reversibility of virus attachment to mineral surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 205–221.

    Article  CAS  Google Scholar 

  • Pang, L., Close, M. E., Goltz, M., Noonan, M., & Sinton, L. (2005). Filtration and transport of Bacillus subtilis spores and the F-RNA phase MS2 in a coarse alluvial gravel aquifer: Implication in the estimation of setback distances. Journal of Contaminant Hydrology, 77, 165–194.

    Article  CAS  Google Scholar 

  • Ricca, E., Henriques, A. O., & Cutting, S. M. (2004). Bacterial Spore Formers: Probiotics and Emerging Applications. Horizon Bioscience. pp. 244.

  • Schaeffer, P., Millet, J., & Aubert, J. -P. (1965). Catabolic repression of bacterial sporulation. Paper presented at the National Academy of Sciences (PNAS).

  • Schijven, J. F., de Bruin, H. A. M., Hassanizadeh, S. M., & de Roda Husman, A. M. (2003). Bacteriophages and clostridium spores as indicator organisms for removal of pathogens by passage through saturated dune sand. Water Research, 37, 2186–2194.

    Article  CAS  Google Scholar 

  • Sinton, L. W., Noonan, M. J., Finlay, R. K., Pang, L., & Close, M. E. (2000). Transport and attenuation of bacteria and bacteriophages in an alluvial gravel aquifer. New Zealand Journal of Marine and Freshwater Research, 34, 175–186.

    Article  Google Scholar 

  • Stalheim, T., & Granum, P. E. (2001). Characterization of spore appendages from Bacillus cereus strains. Journal of Applied Microbiology, 91, 839–845.

    Article  CAS  Google Scholar 

  • Tan, Y., Gannon, J. T., Baveye, P., & Alexander, M. (1994). Transport of bacteria in an aquifer sand: Experiments and model simulations. Water resources research, 30, 3243–3252.

    Article  Google Scholar 

  • Taylor, R., Cronin, A., Pedley, S., Barker, J., & Atkinson, T. (2004). The implications of groundwater velocity variations on microbial transport and wellhead protection—review of field evidence. FEMS Microbiology Ecology, 49, 17–26.

    Article  CAS  Google Scholar 

  • Trevors, J. T., van Elsas, J. D., van Overbeek, L. S., & Starodub, M. E. (1990). Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Applied and Environmental Microbiology, 56, 401–408.

    CAS  Google Scholar 

  • Van Elsas, J. D., Trevors, J. T., & van Overbeek, L. S. (1991). Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms. Biology and Fertility of Soils, 10, 249–255.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Homeland Security Grant from the Office of the Vice President for Research of the University of Arizona for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Boone, S.A. & Gerba, C.P. Factors that Influence the Transport of Bacillus cereus Spores through Sand. Water Air Soil Pollut 199, 151–157 (2009). https://doi.org/10.1007/s11270-008-9867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9867-9

Keywords

Navigation