Skip to main content

Advertisement

Log in

The Environmental Impact of the Platinum Group Elements (Pt, Pd, Rh) Emitted by the Automobile Catalyst Converters

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The present paper deals with an extensive review of literature concerning the platinum group elements (PGEs), and their impact on the environment. The increased number of cars and vehicles fitted with catalytic converters, has been linked with the wide spread in the environment of the PGEs, i.e. Pt, Pd and Rh. Numerous studies present compelling evidence that the catalytic converters, do not only minimize the pollution caused by the car exhaust fumes, but also they release in the environment particulate matter containing the above noble elements, which accumulate in the soil, and plants, or remain suspended in the air, being transported to large distances. Indeed, the concentration of these noble elements in the soil and plants has increased significantly during the last 10–15 years, especially along the road side of high ways. Assessment of the PGEs health risk was originally based on measuring the body fluid in Pt, Pd and Rh content of occupationally involved people, as well as of the general population. Recent results based on cellular studies show that the PGEs are related to respiratory sensitization, allergic reactions, dermatitis, urticaria, damage of the epithelial lung cells, asthma, rhinoconjuctivitis, lymphocyte proliferation and cytokine release and possibly to cancer. In spite of the progress attained, more work is necessary for an accurate health risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J., & Ayres, D. C. (1997). Chemical principles of environmental pollution p. 147. London: Blackie Academic and Professional.

    Google Scholar 

  • Artlet, S., Koning, H. P., Levsen, K., Kock, H., & Rosner, G. (1999). Engine dynamometer experiments. Platinum emissions from differentially aged three-way catalytic converters. Atmospheric Environment, 33, 3559–3565. doi:10.1016/S1352-2310(99)00109-0.

    Article  Google Scholar 

  • Barany, E., Bergdahl, I. A., Bratteby, L. E., Lunch, T., Samuelson, G., & Schultz, A. (2002). Relationships between trace element concentrations in human, blood and serum. Toxicology Letters, 134, 177–184. doi:10.1016/S0378-4274(02)00187-X.

    Article  CAS  Google Scholar 

  • Barbante, C., Veysseyre, A., Ferrari, C., Van de Velde, K., Morel, C., Capodaglio, G., et al. (2001). Greenland snow evidence of large scale atmospheric contamination for platinum. Palladium and Rhodium Environmental Science Technology, 35, 835–839. doi:10.1021/es000146y.

    Article  CAS  Google Scholar 

  • Barefoot, R. R. (1999). Distribution and speciation of platinum group elements in the environmental matrices. Trends in Analytical Chemistry, 18, 702–707. doi:10.1016/S0165-9936(99)00173-9.

    Article  CAS  Google Scholar 

  • Begerow, J., & Dunemann, L. (2000). Internal platinum and palladium exposure of the general population with emphasis on the exposure from automobile exhaust and dental restorative alloys. In Zereini, F., Alt, F. (Eds), Anthropogenic platinum group element emission. Their impact on man and the environment (pp. 227–236). Berlin: Springer.

  • Bocca, B., Petrucci, F., Alimonti, A., & Caroli, S. (2003). Traffic related platinum and rhodium concentration in the atmosphere of Rome. Journal of Environmental Monitoring, 5, 563–568. doi:10.1039/b303732k.

    Article  CAS  Google Scholar 

  • Boscolo, P., Di Giampaolo, D., Reale, M., Castellani, M. L., Volpe, A. R., Carmignani, M., et al. (2004). Different effects of platinum, palladium and rhodium salts on lymphocyte proliferation and cytokine release. Annals of Clinical Laboratory Science, 34, 299–306.

    CAS  Google Scholar 

  • Botre, C., Tosi, M., Mazzei, F., Bocca, B., Petrucci, F., & Alimonti, A. (2007). Automotive catalytic converters and environmental pollution: Role of the platinum group elements in redox reactions and free radical production. International Journal of Environment and Health, 1, 142–152.

    Google Scholar 

  • Causy, D., Gochfeld, M., Gurzaw, E., Neagn, C., & Redel, H. (2003). Lessons from case studies of metals. Investigating exposure, bioavailability and risk. Ecotoxicology and Environmental Safety, 56, 45–51. doi:10.1016/S0147-6513(03)00049-6.

    Article  CAS  Google Scholar 

  • Cicchela, D., De Vivo, B., & Lima, A. (2003). Palladium and platinum concentration in soils from the Napoli Metropolitan area, Italy. Possible effects of catalytic exhausts. Science of the Total Environment, 308, 121–131.

    Article  CAS  Google Scholar 

  • Cinti, D., Angelone, M., Masi, V., & Cremisini, C. (2002). Platinum levels in natural and urban soils from Rome and Latium (Italy): Significance for pollution by automobile catalytic converters. The Science of the Total Environment, 293, 47–57. doi:10.1016/S0048-9697(01)01137-8.

    Article  CAS  Google Scholar 

  • Colvile, R. N., Hutchinson, E. J., Mindell, J. S., & Warren, R. F. (2001). The transport sector as a source of air pollution. Atmospheric Environment, 35, 1537–1565. doi:10.1016/S1352-2310(00)00551-3.

    Article  CAS  Google Scholar 

  • Djingova, R., Kovacheva, P., Wagner, G., Markert, B. (2003). Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Science of the Total Environment, 308(1–3), 235–236.

    Google Scholar 

  • Ely, J. C., Neal, S. R., Kulpa, C. F., Scheegurt, M. A., Seidler, J. A., & Jain, J. C. (2001). Implication of platinum group elements accumulation along us roads from catalytic converter attrition. Environmental Science & Technology, 35, 3816–3822. doi:10.1021/es001989s.

    Article  CAS  Google Scholar 

  • Farago, M., Kavanagh, P., Blanks, R., Kelly, J., Kazantzis, G., Thorton, I., et al. (1998). Platinum concentrations in urban road dust and soil and in blood and urine in the United Kingdom. Analyst (London), 123, 451–454. doi:10.1039/a705920e.

    Article  CAS  Google Scholar 

  • Forbers, B. (2000). Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharmaceutical Science and Technology Today, 3, 18–27.

    Article  Google Scholar 

  • Fuchs, W. A., & Rose, W. A. (1974). The geochemical behavior of platinum and palladium in weathering cycle in Stillwater Complex, Montana. Economic Geology, 69, 332.

    CAS  Google Scholar 

  • Gagnon, Z. E., Newkirk, C., & Hicks, S. (2006). Impact of platinum group metals on the environment. A toxicological, genotoxic and analytical chemistry study. Journal of Environmental Science and Health Part A, 41, 397–414.

    CAS  Google Scholar 

  • Gomez, B., Palacios, M. A., Gomez, M., Sanchez, J. L., Morrison, G., Rauch, S., et al. (2002). Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborn particles and road dust of some European cities. The Science of the Total Environment, 299, 1–19. doi:10.1016/S0048-9697(02)00038-4.

    Article  CAS  Google Scholar 

  • Hartley, F. R. (1991). Chemistry of platinum group metals, recent developments. Amsterdam: Elsevier Publishers.

    Google Scholar 

  • Helmers, E., & Mergel, N. (1998). Platinum and Rhodium in the polluted environment: Studying the emissions of automobile catalysts with emphasis on the application of CSV rhodium analysis. Fresenius Journal of Analytical Chemistry, 362, 522–528. doi:10.1007/s002160051118.

    Article  CAS  Google Scholar 

  • Hoppstock, K., & Sures, B. (2004). Platinum group metals. In E. Merian, M. Anke, & M. Stoeppler (Eds.), Elements and their compounds in the environment (pp. 1047–1086). Weinheim: Wiley.

    Chapter  Google Scholar 

  • IPCSEHC (1991). International programme on chemical safety environmental health criteria 125 platinum. Geneva Switzeland: WHO.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton, FL, USA: CRC.

    Google Scholar 

  • Klaassen, C. (1996). Casarett and Doulls toxicology. The basic science of poisons (pp. 725–726, 5th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Konig, H. P., Hertel, R. F., Koch, W., & Rosner, G. (1992). Determination of the platinum emissions from three way catalysts-quipped with gasoline engine. Atmospheric Environment, 26, 741–745.

    Google Scholar 

  • Kothny, E. L. (1979). Palladium in plant ash. Plant and Soil, 53, 547. doi:10.1007/BF02140726.

    Article  CAS  Google Scholar 

  • Krug, H. F., Kern, K., Worle-Knirsch, J. M., & Diabate, S. (2006). Toxicity of nanomaterials—New carbon conformation and metal oxides. In C. Kumar (Ed.), Impact of nanomaterials for life sciences (pp. 153–185). Weinheim: Wiley.

    Google Scholar 

  • Leikin, J., & Paloucek, F. (1995). Toxicology handbook, American Pharmaceutical Association. Hudson, OH: Lexi-Comp. Inc. Osteopathic Hospitals, p. 781.

  • Lesniewska, B. A., Godlewska-Zylkiewicz, Bocca B., Caimi S., Carroli S., Hule nicki A. (2004). Platinum, palladium and rhodium content in road dust, tunnel dust and common grass in Bialystok area (Polland): A pilot study. Science of the Total Evironment, 32(1–3), 93.

  • Linnett, P. J., & Hughes, E. G. (1999). 20 years of medical surveillance on exposure to allergenic and non-allergenic platinum compounds. The importance of chemical speciation. Occupational and Environmental Medicine, 56, 191–196.

    Article  CAS  Google Scholar 

  • Lusting, S. (1997). Platinum in the environment. Wissenschaft: Munchen Herbert Utz Verlog.

  • Lusting, S., Zang, S., Michalke, B., Schramel, P., & Beck, W. (1996). Platinum determination in nutrient plants by inductively coupled plasma mass spectrometry with special respect to the hafnium oxide interference. FreseniusJournal of Analytical Chemistry, 357, 1157–1163. doi:10.1007/s002160050323.

    Article  Google Scholar 

  • Merget, R., & Rosner, G. (2001). Evaluation of the health risk of platinum group metals emitted from automotive catalyst converters. Science of the Total Environment, 270, 165–173.

    Article  CAS  Google Scholar 

  • Merian, E., Anke, M., Inhat, M., & Steppler, M. (2004). Elements and their compounds in the environment. Weinheim: Wiley VCH.

    Google Scholar 

  • Mills, C. F. (1985). Dietary interactions involving the trace elements. Annual Review of Nutrition, 5, 173–193. doi:10.1146/annurev.nu.05.070185.001133.

    Article  CAS  Google Scholar 

  • Moldovan, M., Gomez, M. M., & Pallacios, M. A. (1999). Determination of platinum and palladium in car exhaust fumes. Journal of Analytical Atomic Spectrometry, 14, 1163–1169.

    Article  CAS  Google Scholar 

  • Morcelli, C. P. R., Figueired, J., Kakazu, M., & Sigolo, J. B. (2005). PGEs and other traffic-related elements in roadside soils from Sao Paulo, Brazil. The Science of the Total Environment, 345, 81–91. doi:10.1016/j.scitotenv.2004.10.018.

    Article  CAS  Google Scholar 

  • Morton, O., Puchelt, H., Hernandez, E., & Lounezeva, E. (2001). Traffic related platinum group elements (PGEs) in soils from Mexico city. Journal of Geochemical Exploration, 72, 223–227. doi:10.1016/S0375-6742(01)00163-7.

    Article  CAS  Google Scholar 

  • Motelica-Heino, M., Rauch, S., Morrison, G. M., & Donard, O. F. X. (2001). Determination of palladium platinum and rhodium concentrations in urban road sediments by laser ablation—ICP-MS. Analytica Chimica Acta, 436, 233–244. doi:10.1016/S0003-2670(01)00967-9.

    Article  CAS  Google Scholar 

  • Nachtigall, D., Kock, H., Artelts, S., Levsen, K., Wunsch, G., & Ruhle, T. (1955). Platinum solubility of a substance designed as a model for emissions of automobile catalytic converters. FreseniusJournal of Analytical Chemistry, 354, 742.

    Google Scholar 

  • Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at nanolevel. Science, 311, 632–637. doi:10.1126/science.1114397.

    Article  CAS  Google Scholar 

  • Palacios, M. A., Gomez, M. M., Maldovan, M., Morisson, G., Rauch, S., & McLead, C. (2000). Platinum group elements: Quantification in collected exhaust fumes and studies of catalyst surfaces. The Science of the Total Environment, 257, 1–15 doi:10.1016/S0048-9697(00)00464-2.

    Article  CAS  Google Scholar 

  • Pallas, J. E., & Jones, J. B. (1978). Platinum uptake by horticultural crops. Plant and Soil, 50, 207–212. doi:10.1007/BF02107169.

    Article  CAS  Google Scholar 

  • Paolucci, C., Ponti, J., Fabbri, M. V., Breda, D., Sabbioni, E., & Burastero, S. B. (2007). Platinum group elements allergic immune response on dendritic cells. Allergy and Immunology, 143, 1–2.

    Google Scholar 

  • Proctor, N. H., Hughes, J. P., & Fischmann, M. L. (1988). Chemical hazards in workplace (pp. 417–418, 2nd ed.). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Rauch, S., Lu, M., & Morrison, G. (2001). Heterogeneity of platinum group elements in airborne particles. Environmental Science & Technology, 35, 595–599. doi:10.1021/es000048c.

    Article  CAS  Google Scholar 

  • Rauch, S., Morrison, G. M., Motelica-Heino, M., Donald, O. F. X., & Muris, M. (2000). Elemental Association and Fingerprints of traffic-related metals in road sediments. Environmental Science & Technology, 33, 3119–3123. doi:10.1021/es000001r.

    Article  CAS  Google Scholar 

  • Ravera, O. (1989). Ecological assessment of environmental degradation, pollution and recovery p. 140. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Ravindra, K., Bencs, L., & Van Griecken, R. (2004). Platinum group elements in the environment and their health risk. The Science of the Total Environment, 5, 1–43. doi:10.1016/S0048-9697(03)00372-3.

    Article  CAS  Google Scholar 

  • Schafer, J., Hannker, D., Eckhardt, J. D., & Stuben, D. (1998). Uptake of traffic related heavy metals and platinum group elements (PGE) by plants. The Science of the Total Environment, 215, 59–67. doi:10.1016/S0048-9697(98)00115-6.

    Article  CAS  Google Scholar 

  • Schierl, R., & Fruhmann, G. (1996). Airborne platinum concentration in Munich city buses. The Science of the Total Environment, 182, 21–23. doi:10.1016/0048-9697(95)05031-0.

    Article  CAS  Google Scholar 

  • Schlogl, R., Indlekofer, G., Oelhafen, P., (1987). Mikropartikel emissionen von verbrennungs motoren mit Abgas-reiningung Rotgen-photoelektronenspektroskopie in der Umweltanalyti. Angewandte Chemie, 99, 312–322 (in German).

    Google Scholar 

  • Schmid, M., Zimmerman, S., Krug, F., & Sures, B. (2007). Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cells. Environment International, 33, 385–390. doi:10.1016/j.envint.2006.12.003.

    Article  CAS  Google Scholar 

  • Sures, B., Zimmermann, S., Sontag, C., Stuben, H., & Taraschewski, H. (2003). The acanthocephalan (Paratenuisentis ambiguus) as a sensitive indicator of the precious metals Pt and Rh from automobile catalytic converters. Environmental Pollution, 122, 401–405. doi:10.1016/S0269-7491(02)00306-8.

    Article  CAS  Google Scholar 

  • Tankari Dan Badjo, A., Ducoulombier-Crepineau, C., Soligot, C., Feidt, C., & Rychen, G. (2007). Deposition of platinum group elements and polycyclic aromatic hydrocarbons on rye grass exposed to vehicular traffic. Agronomy for Sustainable Development, 27, 261–266.

    Article  CAS  Google Scholar 

  • Telisman, S. (1995). Interactions of essential and/or toxic metals and metalloids regarding interindividual differences in susceptibility to various toxicans and chronic diseases in man. Arhiv za Higijenu Rada i Toksikologiju, 46, 459–476.

    CAS  Google Scholar 

  • Tillery, J. B., & Jhonson, D. E. (1975). Determination of platinum, palladium and lead in biological samples by atomic absorption spectrophotometry. Environmental Health Perspectives, 12, 19–26. doi:10.2307/3428205.

    Article  CAS  Google Scholar 

  • Van Riper, J. E. (1962). Man’s physical world. The metallic minerals p. 460. New York: Mc Graw-Hill.

    Google Scholar 

  • Vaughan, G. T., & Florence, T. M. (1992). Platinum in the human diet, blood, hair and excreta. The Science of the Total Environment, 111, 47–58. doi:10.1016/0048-9697(92)90044-S.

    Article  CAS  Google Scholar 

  • Whiteley, J. D., & Murray, F. (2003). Anthropogenic platinum group elements (Pt,Pd,Rh) concentrations in road dust and road side soils from Perth, Western Australia. The Science of the Total Environment, 317, 121–135. doi:10.1016/S0048-9697(03)00359-0.

    Article  CAS  Google Scholar 

  • Zereini, F., Skerstupp, B., Rankerburg, F., Dirksen, F., Beyer, J. M., & Claus, T. (2000). Anthropogenic emissions of platinum group elements (Pt,Pd,Rh) into the environment: Concentration, distribution and geochemical behavior in soils. In: F. Zereini, F. Alt (Eds), Anthropogenic platinum group element-emissions. Their impact on main and the environment (pp. 73–83). Berlin: Springer.

  • Zereini, F., Wiseman, C., Beyer, J. M., Artelt, S., & Urban, H. (2001). Platinum, lead and cerium concentrations of street particulate matter (Frankfurt Am Main, Germany). Journal of Soils and Sediments, 3, 188–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kalavrouziotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalavrouziotis, I.K., Koukoulakis, P.H. The Environmental Impact of the Platinum Group Elements (Pt, Pd, Rh) Emitted by the Automobile Catalyst Converters. Water Air Soil Pollut 196, 393–402 (2009). https://doi.org/10.1007/s11270-008-9786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9786-9

Keywords

Navigation