Skip to main content
Log in

Removal of Cadmium By Natural and Surfactant-Modified Mexican Zeolitic Rocks in Fixed Bed Columns

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The dynamic removal of cadmium from aqueous solutions by natural and surfactant-modified Mexican zeolitic rocks (clinoptilolite–heulandite type) in fixed bed column systems was investigated. The performances of fixed bed columns were described through the breakthrough curves obtained from column experiments and the values of column parameters predicted as a function of bed height. The column adsorption data were evaluated in terms of the bed adsorption capacity and the efficiency of the process. The experimental results fitted well the bed depth service time model (BDST) for both adsorbents, and the empty bed residence time model (EBRT) was used to optimize column operating conditions. The surface modification of the zeolitic rock with surfactant affected the removal of cadmium in fixed bed systems. Moreover, a column experiment with surfactant modified zeolitic rock previously saturated with 4-chlorophenol was carried out and the results showed that this saturation had a negative effect on the performance of the column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bohart, G. S., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–544. DOI 10.1021/ja01448a018.

    Article  CAS  Google Scholar 

  • Cortés-Martínez, R., Martínez-Miranda, V., Solache-Ríos, M., & García-Sosa, I. (2004). Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions. Separation Science and Technology, 39, 2711–2730. DOI 10.1081/SS-200026766.

    Article  Google Scholar 

  • Cortés-Martínez, R., Solache-Ríos, M., Martínez-Miranda, V., & Alfaro-Cuevas, V. R. (2007). Sorption behavior of 4-chlorophenol from aqueous solutions by surfactant-modified Mexican zeolitic rock in batch and fixed bed systems. Water, Air, and Soil Pollution, 183, 85–94. DOI 10.1007/s11270-007-9358-4.

    Article  Google Scholar 

  • Crittenden, B., & Thomas, W. J. (1998). Adsorption technology & design. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Dal Bosco, S. M., Jimenez, R. S., Vignado, C., Fontana, J., Geraldo, B., Figuereido, F. C. A., et al. (2006). Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption, 12, 133–146. DOI 10.1007/s10450-006-0375-1.

    Article  CAS  Google Scholar 

  • Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Peleka, E. (2003). Removal of arsenic and cadmium by akaganeite fixed beds. Separation Science and Technology, 38, 3967–3981. DOI 10.1081/SS-120024714.

    Article  CAS  Google Scholar 

  • Díaz-Nava, M. C. (1999). Caracterización y evaluación de clinoptilolita e hidrotalcita para remoción de iones fluoruro del agua. Tesis de Maestría en Ciencias del Agua, Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México.

  • Díaz-Nava, M. C., Olguín, M. T., Solache-Ríos, M., Alarcón-Herrera, M. T., & Aguilar-Elguezabal, A. (2005). Characterization and improvement of ion exchange capacities of Mexican clinoptilolite-rich tuffs. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 51, 231–240. DOI 10.1007/s10847-004-6716-3.

    Article  Google Scholar 

  • Díaz-Nava, M. C. (2006). Organo-minerales mexicanos (zeolíticos y arcillosos) como adsorbentes de fenol, contaminante del agua. Tesis de doctorado en Ciencia y Tecnología Ambiental. Centro de Investigación en Materiales Avanzados, S. C. Chihuahua, México.

  • El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of basic dyes onto activated carbon using microcolumns. Industrial & Engineering Chemistry Research, 45, 6044–6049. DOI 10.1021/ie060289e.

    Article  Google Scholar 

  • Gupta, V. K., Srivastava, S. K., & Tyagi, R. (2000). Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Research, 34, 1543–1550. DOI 10.1016/S0043-1354(99)00322-X.

    Article  CAS  Google Scholar 

  • Hutchins, R. A. (1973). New method simplifies design of activated carbon systems. Chemical Engineering, 80, 133–138.

    CAS  Google Scholar 

  • Inglezakis, V. J., & Grigoropoulou, H. P. (2001). Applicability of simplified models for the estimation of ion exchange diffusion coefficients in zeolites. Journal of Colloid and Interface Science, 234, 434–441. DOI 10.1006/jcis.2000.7304.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Sharma, M. K. (2006). Heavy metal transport in the Hindon river basin, India. Environmental Monitoring and Assessment, 112, 255–270. DOI 10.1007/s10661-006-1706-0.

    Article  CAS  Google Scholar 

  • Juang, R. S., Lin, S. H., & Tsao, K. H. (2004). Sorption of phenols from water in column systems using surfactant-modified montmorillonite. Journal of Colloid and Interface Science, 269, 46–52. DOI 10.1016/j.jcis.2003.08.016.

    Article  CAS  Google Scholar 

  • Jusoh, A., Shiung, L. S., Ali, N., & Noor, M. J. M. M. (2007). A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination, 206, 9–16. DOI 10.1016/j.desal.2006.04.048.

    Article  CAS  Google Scholar 

  • Ko, D. C. K., Lee, V. K. C., Porter, J. F., & McKay, G. (1999). Correlation-based approach to the optimization of fixed-bed sorption units. Industrial & Engineering Chemistry Research, 38, 4868–4877. DOI 10.1021/ie9902784.

    Article  CAS  Google Scholar 

  • Ko, D. C. K., Porter, J. F., & McKay, G. (2001). Film-pore diffusion model for the fixed bed sorption of copper and cadmium ions onto bone char. Water Research, 35, 3876–3886. DOI 10.1016/S0043-1354(01)00114-2.

    Article  CAS  Google Scholar 

  • Ko, D. C. K., Lee, V. K. C., Porter, J. F., & McKay, G. (2002). Improved design and optimization models for the fixed bed adsorption of acid dye and zinc ions from effluents. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 77, 1289–1295. DOI 10.1002/jctb.707.

    Article  CAS  Google Scholar 

  • Lee, J. W., Jung, H. J., & Moon, H. (1997). Effect of operating conditions on adsorption of cephalosporin C in a column adsorber. Korean Journal of Chemical Engineering, 14, 277–284. DOI 10.1007/BF02706824.

    Article  CAS  Google Scholar 

  • Li, Q., Wu, S., Liu, G., Liao, X., Deng, X., Sun, D., et al. (2004). Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 34, 135–142. DOI 10.1016/S1383-5866(03)00187-4.

    Article  Google Scholar 

  • Lin, C. W., Chen, S. Y., & Cheng, Y. W. (2006). Effect of metals on biodegradation kinetics for methyl tert-butyl ether. Biochemical Engineering Journal, 32, 25–32. DOI 10.1016/j.bej.2006.07.010.

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Ng, A. Y. (1999). Column study on the sorption of Cr(VI) using quaternized rice hulls. Bioresource Technology, 68, 205–208. DOI 10.1016/S0960-8524(98)00128-X.

    Article  CAS  Google Scholar 

  • Markovska, L., Meshko, V., Noveski, V., & Marinkovski, M. (2001a). Solid diffusion control of the adsorption of basic dyes onto granular activated carbon and natural zeolite in fixed bed columns. Journal of the Serbian Chemical Society, 66, 463–475.

    CAS  Google Scholar 

  • Markovska, L., Meshko, V., & Noveski, V. (2001b). Adsorption of basic dyes in a fixed bed column. Korean Journal of Chemical Engineering, 18, 190–195. DOI 10.1007/BF02698458.

    Article  CAS  Google Scholar 

  • Márquez-Canosa, E., Herrera-Vasconcelos, T. L., Márquez-Goma, R. J., & Mondelo-Rodríguez, A. (1998). Determinación de los parámetros hidráulicos de la zeolita natural Cubana como material filtrante. Tecnología de agua, 172, 46–50.

    Google Scholar 

  • Márquez-Canosa, E., Herrera-Vasconcelos, T. L., & Gutiérrez-Duque, N. M. (2000). Características fisicoquímicas de las zeolitas naturales como medio filtrante, Memorias del XXVII Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Porto Alegre, Brasil.

  • McKay, G., & Bino, M. J. (1990). Simplified optimization procedure for fixed bed adsorption systems. Water, Air, and Soil Pollution, 51, 33–41. DOI 10.1007/BF00211501.

    Article  CAS  Google Scholar 

  • Netpradit, S., Thiravetyan, P., & Towprayoon, S. (2004). Evaluation of metal hydroxide for reactive dye adsorption in a fixed-bed column system. Water Research, 38, 71–78. DOI 10.1016/j.watres.2003.09.007.

    Article  CAS  Google Scholar 

  • Pakshirajan, K., & Swaminathan, T. (2006). Continuous biosorption of Pb, Cu, and Cd by Phanerochaete chrysosporium in a packed column reactor. Soil & Sediment Contamination, 15, 187–197. DOI 10.1080/15320380500506347.

    Article  CAS  Google Scholar 

  • Paterson, S. (1947). The heating or cooling of a solid sphere in a well stirred fluid. Proceedings of the Physical Society (London), 59, 50. DOI 10.1088/0959-5309/59/1/310.

    Article  Google Scholar 

  • Ruthven, D. (1984). Principles of adsorption and adsorption processes. New York: Wiley.

    Google Scholar 

  • Santhy, K., & Selvapathy, P. (2004). Removal of heavy metals from wastewater by adsorption on coir pith activated carbon. Separation Science and Technology, 39, 3331–3351. DOI 10.1081/SS-200036561.

    Article  CAS  Google Scholar 

  • Taty-Costodes, V. C., Fauduet, H., Porte, C., & Ho, Y. S. (2005). Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column. Journal of Hazardous Materials, 123, 135–144. DOI 10.1016/j.jhazmat.2005.03.032.

    Article  CAS  Google Scholar 

  • Tran, H. H., & Roddick, F. A. (1999). Comparison of chromatography and dessicant silica gels for the adsorption of metal ions—II. Fixed-bed study. Water Research, 33, 3001–3011. DOI 10.1016/S0043-1354(99)00018-4.

    Article  CAS  Google Scholar 

  • Ugurlu, M., Gurses, A., Yalcin, M., & Dogar, C. (2005). Removal of phenolic and lignin compounds from bleached kraft mill effluent by fly ash and sepiolite. Adsorption, 11, 87–97. DOI 10.1007/s10450-005-1096-6.

    Article  CAS  Google Scholar 

  • Vujacović, A., Daković, A., Lemić, J., Radosavljević, A., & Tomašević-Čanovic, M. (2003). Adsorption of inorganic anionic contaminants on surfactant modified minerals. Journal of the Serbian Chemical Society, 11, 833–841. DOI 10.2298/JSC0311833V.

    Google Scholar 

  • Walker, G. M., & Weatherley, L. R. (2000). Textile wastewater treatment using granular activated carbon adsorption in fixed beds. Separation Science and Technology, 35, 1329–1341. DOI 10.1081/SS-100100227.

    Article  CAS  Google Scholar 

  • Zulfadhly, Z., Mashitah, M. D., & Bhatia, S. (2001). Heavy metals removal in fixed-bed column by macro fungus Pycnoporus sanguineus. Environmental Pollution, 112, 463–470. DOI 10.1016/S0269-7491(00)00136-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from CONACyT, projects 46219 and 12445 (Fondos Mixtos CONACYT-Gobierno del Estado de Michoacán)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés-Martínez, R., Solache-Ríos, M., Martínez-Miranda, V. et al. Removal of Cadmium By Natural and Surfactant-Modified Mexican Zeolitic Rocks in Fixed Bed Columns. Water Air Soil Pollut 196, 199–210 (2009). https://doi.org/10.1007/s11270-008-9769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9769-x

Keywords

Navigation