Skip to main content
Log in

Ozone Formation Potentials of Volatile Organic Compounds and Ozone Sensitivity to Their Emission in the Megacity of São Paulo, Brazil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of São Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22–24 and March 13–15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO x emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO x in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH > 2 × 104 ppm−1 min−1; olefins with a kOH < 7 × 104 ppm−1 min−1; olefins with a kOH > 7 × 104 ppm−1 min−1; ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrade, M. F., Ynoue, R. Y., Harley, R., & Miguel, A. H. (2004). Air quality model simulating photochemical formation of pollutants: the São Paulo Metropolitan Area, Brazil. International Journal Environmental Pollution, 22, 460–475. doi:10.1504/IJEP.2004.005681.

    Article  CAS  Google Scholar 

  • Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34, 2063–2101. doi:10.1016/S1352–2310(99)00460-4.

    Article  CAS  Google Scholar 

  • Carter, W. P. L. (1994). Development of Ozone Reactivity Scales for Volatile Organic Compounds. Journal Air & Waste Management Association, 44, 881–899.

    CAS  Google Scholar 

  • Carter, W. P. L. (2000). Documentation of the saprc-99 chemical mechanism for VOC reactivity assessment volume 1 of 2 documentation text. Final Report to California Air Resources Board. Air Pollution Research Center and College of Engineering Center for Environmental Research and Technology University of California, Riverside (Contract 92-329 and Contract 95-308 9252100-AP-RT17-001-FR). http://helium.ucr.edu/~carter/reactdat.htm.

  • Carter, W. P. L. (2003). VOC reactivity data as of 2 May 2003. ftp://cert.ucr.edu/pub/carter/SAPRC99/r02tab.xls. Accessed June 2006.

  • CETESB (2001). Relatório de qualidade do ar do Estado de São Paulo 2000 [in Portuguese]. São Paulo: Série Relatórios/CETESB, 120 pp (ISSN 0103-4103).

    Google Scholar 

  • CETESB (2006). Relatório de qualidade do ar no Estado de São Paulo 2005 [in Portuguese]. São Paulo: Série Relatórios/Secretaria do Estado do Meio Ambiente, 140 pp (ISSN 0103-4103).

    Google Scholar 

  • Cohan, D. S., Hakami, A., Hu, Y., & Russel, A. G. (2005). Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis. Environmental Science and Technology, 39, 6739–6748. doi:10.1021/es048664m.

    Article  CAS  Google Scholar 

  • Chuí, G. k., Anderson, R. D., Baker, R. E., & Pinto, F. B. (1975). Brazilian vehicle calibration for ethanol fuels. Paper presented at the Third International Symposium on Alcohol Fuels Technology.

  • Elbir, T. (2003). Comparison of model predictions with the data of an urban air quality monitoring network in Izmir, Turkey. Atmospheric Environment, 37, 2149–2157. doi:10.1016/S1352-2310(03)00087-6.

    Article  CAS  Google Scholar 

  • Freitas, E. D., Rozoff, C., Cotton, W. R., & Silva Dias, P. L. (2007). Interactions of urban heat island and sea breeze circulations during winter over the Metropolitan Area of São Paulo—Brazil. Boundary-Layer Meteorology, 122, 43–65. doi:10.1007/s10546-006-9091-3.

    Article  Google Scholar 

  • Gabusi, V., & Volta, M. (2005). Seasonal modelling assessment of ozone sensitivity to precursors in northern Italy. Atmospheric Environment, 39, 2795–2804. doi:10.1016/j.atmosenv.2004.07.041.

    Article  CAS  Google Scholar 

  • Goodin, W. R., McRae, G. J., & Seinfeld, J. H. (1979). A comparison of interpolation methods for sparse data: Application to wind and concentration fields. Journal of Applied Meteorological, 18, 761–771. doi:10.1175/1520-0450(1979)018<0761:ACOIMF>2.0.CO;2.

    Article  Google Scholar 

  • Hakami, A., Harley, R. A., Milford, J. B., Odman, M. T., & Russel, A. G. (2004). Regional, three-dimensional assessment of the ozone formation potential of organic compounds. Atmospheric Environment, 38, 121–134. doi:10.1016/j.atmosenv.2003.09.049.

    Article  CAS  Google Scholar 

  • Harley, R. A., Russell, A. G., McRae, G. J., Cass, G. R., & Seinfeld, J. H. (1993). Photochemical modeling of the Southern California Air Quality Study. Environmental Science and Technology, 27, 378–388. doi:10.1021/es00039a019.

    Article  CAS  Google Scholar 

  • Harley, R. A., Couter-Burke, S. C., & Yeung, T. S. (2000). Relating liquid fuel and headscape vapor composition for California reformulated gasoline samples containing ethanol. Environmental Science and Technology, 34, 4088–4094. doi:10.1021/es0009875.

    Article  CAS  Google Scholar 

  • Landmann, M. C. (2004). [in Portuguese]. Estimativa das Emissões de Poluentes de Automóveis na RMSP Considerando as Rotas de Tráfego. II Encontro da ANPPAS, São Paulo, Brasil. http://www.anppas.org.br/encontro/segundo/Papers/papers.html. Accessed June 22, 2005.

  • Martins, L. C., Latorre Mdo, R., Saldiva, P. H., & Braga, A. L. (2002). Air pollution and emergency room visits due to chronic lower respiratory diseases in the elderly: an ecological time-series study in São Paulo, Brazil. Journal of Occupational and Environmental Medicine, 44, 622–627. doi:10.1097/00043764-200207000-00006.

    Article  CAS  Google Scholar 

  • Martins, L. D., Andrade, M. F., Freitas, E. D., Pretto, A., Gatti, L. V., Albuquerque, E. L., et al. (2006). Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo City, Brazil. Environmental Science and Technology, 40, 6722–6729. doi:10.1021/es052441u.

    Article  CAS  Google Scholar 

  • McRae, G. J., Goodin, W. R., & Seinfeld, J. H. (1982). Development of second-generation mathematical model for urban air pollution—I model formulation. Atmospheric Environment, 16, 679–696. doi:10.1016/0004-6981(82)90386-9.

    Article  CAS  Google Scholar 

  • McRae, G. J., Russell, A. G., & Harley, R. A. (1992). CIT photochemical airshed model- Systems Manual, Carnegie Mellon University, Pittsburgh, Pennsylvania and California Institute of Technology, Pasadena, California.

  • Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal Air & Waste Management Association, 54, 644–680.

    CAS  Google Scholar 

  • Murgel, E. M. (1990). Veículos Automotores: o proálcool e a qualidade do ar. Confederação Nacional da Indústria, Rio de Janeiro.

  • Peterson, J. T. (1976). Calculated actinic fluxes (290–700 nm) for air pollution photochemistry applications p. 63. Research Triangle Park: US Environmental Protection Agency, EPA-600/4-76-025.

    Google Scholar 

  • Pun, B. K., Seigneur, C., & White, W. (2003). Day-of-week behavior of atmospheric ozone in three U.S. Cities. Journal Air & Waste Management Association, 53, 789–801.

    CAS  Google Scholar 

  • Russell, A. G., McCue, K. F., & Cass, G. R. (1988). Mathematical modeling of the formation of nitrogen-containing air pollutants. 1. Evaluation of an Eulerian photochemical model. Environmental Science and Technology, 22(3), 263–271. doi:10.1021/es00168a004.

    Article  CAS  Google Scholar 

  • Sadanaga, Y., Matsumoto, J., & Kajii, Y. (2003). Photochemical reactions in the urban air: Recent understandings of radical chemistry. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 85–104. doi:10.1016/S1389-5567(03)00006-6.

    Article  CAS  Google Scholar 

  • Sánchez-Ccoyllo, O. R., Rita Yuri Ynoue, R. Y., Martins, L. D., & Andrade, M. F. (2006a). Impacts of ozone precursor limitation and meteorological variables on ozone concentration in São Paulo, Brazil. Atmospheric Environment, 40, 552–562. doi:10.1016/j.atmosenv.2006.04.069.

    Article  Google Scholar 

  • Sánchez-Ccoyllo, O. R., Silva Dias, P. L., Andrade, M. F., & Freitas, S. R. (2006b). Determination of O3, CO and PM10 transport in the metropolitan area of São Paulo, Brazil through synoptic-scale analysis of back trajectories. Meteorology and Atmospheric Physics, 92, 83–93. doi:10.1007/s00703-005-0139-6.

    Article  Google Scholar 

  • Sillman, S. (1999). The relation between O3, NO x and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33, 1821–1845. doi:10.1016/S1352-2310(98)00345-8.

    Article  CAS  Google Scholar 

  • Silva Dias, M. A. F., & Machado, A. J. (1997). The role of local circulations in summertime convective development and nocturnal fog in São Paulo, Brazil. Boundary Layer Meteorology, 82, 135–157. doi:10.1023/A:1000241602661.

    Article  Google Scholar 

  • Silva Dias, M. A. F., Vidale, P. F., & Blanco, C. M. R. (1995). Case study and numerical simulation of the summer regional circulation in São Paulo, Brazil. Boundary Layer Meteorology, 74, 371–388. doi:10.1007/BF00712378.

    Article  Google Scholar 

  • Taylor Jr., G. E. (2001). Risk assessment of tropospheric ozone: Human health, natural resources, and ecology. Human and Ecological Risk Assessment, 7, 1183–1193. doi:10.1080/20018091094934.

    Article  CAS  Google Scholar 

  • USEPA (2005). Guidance on the use of models and other analyses in attainment demonstrations for the 8-hour ozone NAAQS. Draft final. Research Triangle Park: Office of Air Quality Planning and Standards.

    Google Scholar 

  • Vivanco, M. G., & Andrade, M. F. (2006). Validation of the emission inventory in the Sao Paulo metropolitan area of Brazil, based on ambient concentrations ratios of CO, NMOG and NO x and on a photochemical model. Atmospheric Environment, 40, 1189–1198. doi:10.1016/j.atmosenv.2005.10.041.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study received financial support in the form of a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo; grant No. 02/09060-1). We would like to thank CETESB, for providing the air-quality data and Dr. Robert A. Harley for his kind help in discussing the results. We are also grateful to Jefferson D. Boyles for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Droprinchinski Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, L.D., Andrade, M.d.F. Ozone Formation Potentials of Volatile Organic Compounds and Ozone Sensitivity to Their Emission in the Megacity of São Paulo, Brazil. Water Air Soil Pollut 195, 201–213 (2008). https://doi.org/10.1007/s11270-008-9740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9740-x

Keywords

Navigation