Skip to main content
Log in

Uptake of Uranium by Lettuce (Lactuca sativa L.) in Natural Uranium Contaminated Soils in Order to Assess Chemical Risk for Consumers

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Uranium mining activity in Cunha Baixa (Portugal) village has left a legacy of polluted soils and irrigation water. A controlled field experiment was conducted with lettuce (Lactuca sativa L.) in an agricultural area nearby the abandoned mine in order to evaluate uranium uptake and distribution in roots and leaves as well as ascertain levels of uranium intake by the local inhabitants from plant consuming. Two soils with different average uranium content (38 and 106 mg/kg) were irrigated with non-contaminated and uranium contaminated water (<20 and >100 μg/l). A non-contaminated soil irrigated with local tap water (<1 μg/l uranium) was also used as a control. Uranium in lettuce tissues was positively correlated with soil uranium content, but non-significant differences were obtained from contaminated soils irrigated with different water quality. Uranium in plants (dry weight) growing in contaminated soils ranged from 0.95 to 6 mg/kg in roots and 0.32 to 2.6 mg/kg in leaves. Lettuce bioconcentration is more related to available uranium species in water than to its uranium concentration. Translocated uranium to lettuce leaves corresponds to 30% of the uranium uptake whatever the soil or irrigation water quality. A maximum uranium daily intake of 0.06 to 0.12 μg/kg bodyweight day was estimated for an adult assuming 30 to 60 g/day of lettuce is consumed. Although this value accounts for only 10% to 20% of the recommended Tolerable Daily Intake for ingested uranium, it still provides an additional source of the element in the local inhabitants’ diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu, M. M., Tavares, M. T., & Batista, M. J. (2008). Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. Journal of Geochemical Exploration, 96, 210–222.

    Article  CAS  Google Scholar 

  • Actlabs, Activation Laboratories Ltd website: http://www.actalabsint.com.

  • Alloway, B. J. (1990). Heavy metals in soils. New York: Wiley.

    Google Scholar 

  • Amrhein, C., Mosher, P. A., & Brown, A. D. (1993). The effects of redox on Mo, U, B, V, and As solubility in evaporation ponds. Soil Science, 155(4), 249–255.

    Article  CAS  Google Scholar 

  • ANZECC, Australien and New Zealand Environment and Conservation Council (2000). Water Quality Guidelines. Quality for irrigation and general uses. Retrieved March 22 2007 from http://www.mfe.govt.nz/publications/water/anzecc-water-quality-guide-02/anzecc-water-quality-guide-02-pdfs.html.

  • Arnold, E. G., Lenore, S. C., & Andrew, D. E. (Eds) (1992). Standard methods for the examination of water and wastewater (18th ed.). (APHA).

  • ATSDR, Agency for Toxic Substances and Disease Registry (1999). Public Health Statement for Uranium. Retrived February 14, 2007 from http://www.atsdr.cdc.gov/toxprofiles/phs150.html.

  • Bleise, A., Danesi, P. R., & Burkart, W. (2002). Properties, use and health effects of depleted uranium (DU): a general overview. Journal Environmental Radioactivity, 64, 93–112.

    Article  Google Scholar 

  • Carta de Solos (1978). Unidades Pedológicas segundo o esquema da FAO para a Carta dos Solos da Europa (escala 1:1000000). Atlas de Ambiente, Comissão Nacional do Ambiente, Portugal.

  • DL 236/98, Portuguese Legislation on Water Quality (Decree Law 236/98), DR n° 176/98, annexes XVI and XXI.

  • Duquène, L., Vandenhove, H., Tack, F., Van der Avoort, E., Van Hees, M., & Wanninj, J. (2006). Plant-induced changes in soil chemistry do not explain differences in uranium transfer. Journal of Environmental Radioactivity, 90, 1–14.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Brady, D. J., & Kochian, L. V. (1998). Role of U speciation in the uptake and the translocation of uranium by plants. Journal of Experimental Botany, 49, 1183–1190.

    Article  CAS  Google Scholar 

  • Egner, H., Riehm, H., & Domingo, W. R. (1960). Untersuchugen über die chemische bodenanalyses als grundlage für die beurteilung der nahrstoffzustandes der boden. II Chemische extracktions methoden zur phosphor und kaliumbestimmung. Kungliga Lantbrukshoegskolans Annaler, 26, 199–215.

    CAS  Google Scholar 

  • EPA, Environmental Protection Agency (1997). Exposure factors handbook. Vol. II. Washington: NCEA.

    Google Scholar 

  • Fisenne, I. M., Perry, P. M., Decker, K. M., & Keller, H. K. (1987). The daily intake of 234, 235, 238U, 228, 230, 232 Th and 226, 228 Ra by New York City Residents. Health Physics, 53, 357–363.

    Article  CAS  Google Scholar 

  • Fisenne, I. M., Perry, P. M., & Harley, N. H. (1988). Uranium in humans. Radiation Protection Dosimetry, 24, 127–131.

    CAS  Google Scholar 

  • Foth, H. D. (1990). Fundamentals of soil sciences. New York: Wiley.

    Google Scholar 

  • Gulati, K. L., Oswall, M. C., & Nagpaul, K. K. (1980). Assimilation of uranium by wheat and tomato plants. Plant and Soil, 55(1), 55–59.

    Article  CAS  Google Scholar 

  • Hakonson-Hayes, A. C., Fresquez, P. R., & Whicker, F. W. (2002). Assessing potential risks from exposure to natural uranium in well water. Journal of Environmental Radioactivity, 59, 29–40.

    Article  CAS  Google Scholar 

  • Hayes, A.C., Fresquez, P. R., & Whicker, W. F. (2000). Uranium uptake study, Nambe, New Mexico: Source document. Technical Report OSTI ID:766753. Los Alamos National Laboratory. Retrieved January 18, 2007, from Energy Citations database.

  • IAEA, International Atomic Energy Agency (1985). Uranium Biogeochemistry: A bibliography and report on the State of the art, IAEA-TECDOC-327, 9–15.

  • IAEA, International Atomic Energy Agency (1994). Handbook of parameters values for the prediction of radionuclide transfer in temperate environments. AIEA-Technical Report Series, 364.

  • IM, Instituto de Metereologia. Boletim Meteorológico para a Agricultura n° 1946–1950. Retrieved October 20, 2007 from http://www.meteo.pt/pt/previsao/inicial.jsp.

  • INIA, Instituto Nacional de Investigação Agrária–Laboratório Químico Agrícola Rebelo da Silva (2000). Manual de fertilização das culturas.(INIA).

  • IRIS, Integrated Risk Information System (2007). Uranium, soluble salts. Retrieved October 9, 2007 from http://www.epa.gov/iris/subst/o421.htm.

  • IWQC, Irrigation Water Quality Criteria G77-328-A (1997). Retrieved February 16, 2002 from http://www.p2pays.org/ref/20/19718.htm.

  • Keeney, D. R., & Nelson, D. W. (1982). Nitrogen-inorganic forms. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (pp. 643–698, 2nd ed.). Madison: Soil Science Society of America.

    Google Scholar 

  • Lakshmanan, A. R., & Venkateswarlu, K. S. (1988). Uptake of uranium by vegetables and rice. Water, Air & Soil Pollution, 38, 1–2 (Online abstract). Retrieved September 9, 2007.

    Google Scholar 

  • Langmuir, D. (1978). Uranium solution-mineral equilibrium at low temperatures with applications to sedimentary ore deposits. Geochimica Cosmochimica Acta, 42, 547–569.

    Article  CAS  Google Scholar 

  • Laroche, L., Henner, P., Camilleri, V., Morello, M., & Garnier-Laplace, J. (2005). Root uptake of uranium by a higher plant model (Phaseolus vulgaris)—bioavaility from soil solution. Radioprotection, 40(Suppl 1), S33–S39.

    Article  Google Scholar 

  • Magno, C. E. F. (2001). O sistema de gestão territorial e os recursos geológicos em Portugal. Boletim de Minas, 38(3), 151–160 (Jul/Set).

    Google Scholar 

  • Meyer, M. C., McLendon, T., & Price, D. (1998). Evidence of depleted uranium-induce hormesis and differential plant response in three grasses. Journal Plant Nutrition, 21, 2475–2484.

    Article  CAS  Google Scholar 

  • Neves, O. (2002). Minas desactivadas e impactos geoquímicos ambientais. O caso da mina de urânio da Cunha Baixa (Viseu). Ph. D. Dissertation, Technical University of Lisbon, Portugal.

  • Neves, O., & Abreu, M. M. (2006). The impact of uranium contaminated water on Latuca Sativa L. grown in soils from Cunha Baixa Mine Area (Portugal). Extended Abstracts Volume 4th Workshop on Hard Rock Hydrologeology of the Bhoemian Massif, June 21–23, 2006, Jugowice, Poland, 43–44.

  • Neves, O., & Matias, M. J. (2008). Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal). Environmental Geology, 53(8), 1799–1810.

    Article  CAS  Google Scholar 

  • Neves, M. O., Matias, M. J., Abreu M. M., Magalhães, M. C. F., & Basto, M. J. (2005). Abandoned mine site characterization for remediation: the case of the Cunha Baixa uranium mine (Viseu, Portugal). International Workshop on Environmental Contamination from Uranium Production Facilities and their Remediation, IAEA Proceeding Series, 159–169. Retrieved December 10, 2005 from http://www-pub.iaea.org/MTCD/publications/PDF/Pub1228_web.pdf.

  • Nriagu, J. O. (1991). Human influence on the global cycling of trace metals. In J. D. Farmer (Ed.), Heavy metals in the environment, Vol. 1. Edinburgh: CEP Consultants.

    Google Scholar 

  • Parkhurst, D. L. (1995). Users guide to PHREEQC: a computer model to speciation, reaction-path, advective-transport and inverse geochemical calculations. USGS Water-Resources Investigations Report 95-4227.

  • Póvoas, I., & Barral, M. F. (1992). Métodos de análise de Solos. Comunicações Instituto de Investigação Científica Tropical. Série Ciências Agrárias, 10, 41–61.

    Google Scholar 

  • Ribera, D., Labrot, F., Tisnerat, G., & Narbonne, J. F. (1996). Uranium in the environment: Occurrence, transfer and biological effects. Revue Environmental Contamination and Toxicology, 146, 53–80.

    CAS  Google Scholar 

  • Santos Oliveira, J. M., & Ávila, P. F. (2001). Geoquímica na área envolvente da mina da Cunha Baixa (Mangualde, no centro de Portugal). Estudos, Notas e Trabalhos, 43, 25–47.

    CAS  Google Scholar 

  • Santos Oliveira, J. M., Canto, M. J., Pedrosa, M. Y., Ávila, P. & Machado Leite, M. R. (2005). Geochemical evaluation for the site characterization of Cunha Baixa Uranium Mine Central Portugal. International Workshop on Environmental Contamination from Uranium Production Facilities and their Remediation, IAEA Proceeding Series, 233–243. Retrieved December 10, 2005 from http://www-pub.iaea.org/MTCD/publications/PDF/Pub1228_web.pdf.

  • Schnug, E., Steckel, H., & Haneklaus, S. (2005). Contribution of uranium in drinking waters to the daily uranium intake of humans—a case study from Northern Germany. FAL Agricultural Research, 4, 227–236.

    Google Scholar 

  • Schollenberger, C. J., & Simon, R. H. (1945). Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Science, 59, 13–24.

    Article  CAS  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2002). Role of soil properties in phytoaccumulation of uranium. Water, Air and Soil Pollution, 141, 165–180.

    Article  CAS  Google Scholar 

  • Sheppard, S. C., & Evenden, W. G. (1988). Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. Journal Environmental Radioactivity, 8, 255–285.

    Article  CAS  Google Scholar 

  • Sheppard, S. C., & Evenden, W. G. (1992). Bioavailability indices for uranium: Effect of concentration in eleven soils. Archives of Environmental Contamination and Toxicology, 23, 117–124 (Online abstract). Retrieved February 16, 2007. 1/July.

    Article  CAS  Google Scholar 

  • Sheppard, S. C., Evenden, W. G., & Anderson, A. J. (1992). Multiple assays of uranium toxicity in soil. Environmental Toxicology & Water Quality, 7(3), 275–294.

    Article  CAS  Google Scholar 

  • Sheppard, S. C., Evenden, W. G., & Pollock, R. J. (1989). Uptake of natural radionuclides by field and garden crops. Canadian Journal Soil Science, 69, 751–767.

    Article  CAS  Google Scholar 

  • Silveira, B. C. (2001). Impacte radiológico da exploração de urânio em Portugal. Geonovas, 15, 71–86.

    Google Scholar 

  • Singh, K. P. (1997). Uranium uptake by plants. Current Science, 73(6), 532–535.

    CAS  Google Scholar 

  • Srivastava, P. C., & Gupta, U. C. (1996). Trace elements in crop production. USA: Science.

    Google Scholar 

  • Vandenhove, H., Van Hees, M., Wannijn, J., Wouters, K., & Wang, L. (2007). Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index. Environmental Pollution, 145(2), 577–586.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • WHO, World Health Organization (2001). Depleted uranium-Sources, Exposure and Health Effects. WHO/SDE/PHE/01.1 Department of Protection of Human Environment. WHO, Geneva (2001). Retrieved March 20, 2007 from http://www.who.int/ionizing_radiation/pub_meet/ir_pubs/en/.

  • WHO, World Health Organization (2004). Guidelines for Drinking-water Quality, Uranium, 3rd ed., WHO, Geneva. Retrieved April 16, 2007 from http://www.who.int/water_sanitation_health/dwq/en/cmp130704app1.pdf.

  • Wrenn, M. E., Durbin, P. W., Howard, B., Lipstztein, J., Rundo, J., & Dill, E. T. (1985). Metabolism of ingested U and Ra. Health Physics, 48, 601–633.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Program POCI 2010 and FEDER European Communitarian Funds (Research Project POCI/ECM/59188/2004) and by the Centres of Petrology and Geochemistry and Pedology of Technical University of Lisbon (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Neves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, O., Abreu, M.M. & Vicente, E.M. Uptake of Uranium by Lettuce (Lactuca sativa L.) in Natural Uranium Contaminated Soils in Order to Assess Chemical Risk for Consumers. Water Air Soil Pollut 195, 73–84 (2008). https://doi.org/10.1007/s11270-008-9728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9728-6

Keywords

Navigation