Skip to main content
Log in

Chemical Characterization of Rain and Fog Water in the Cervenohorske Sedlo (Hruby Jesenik Mountains, Czech Republic)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Field study at the Cervenohorske sedlo (1,013 m a.s.l.) (Hruby Jesenik Mountains, the Czech Republic, Central Europe) during 1999–2002 has been conducted in order to analyse the chemistry of rain/snow water using bulk and throughfall collector and fog/cloud water using modified passive Grunow collector. Fog water input to coniferous forest (Picea abies) was quantified using canopy balance method. For all samples pH, and the concentrations of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \), Ca2+, K+, Mg2+, Na+, Cl, \( {\text{NO}}^{{\text{ - }}}_{{\text{3}}} \), and \( {\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} \) were measured. The volume-weighted mean pH value varied from 4.92 to 5.43 in open bulk precipitation, from 4.30 to 4.71 in throughfall and from 4.66 to 5.23 in fog water. The fog droplets generally contain higher ion concentrations than rainwater. The related enrichment factors lie between 1.1 and 10.7 for the relevant species. The fog samples exhibit higher concentrations of \( {\text{NO}}^{{\text{ - }}}_{{\text{3}}} \) and \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) as compared to the bulk samples during 2000–2002. \( {\text{NO}}^{{\text{ - }}}_{{\text{3}}} \) are 5.7–10.7 times more concentrated in fog water and \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) are 3.4–7.2 times more concentrated in fog water. These differences may result from the height and characteristics of formation of the droplets. Based on canopy balance method, the annual fog water inputs were estimated to be 22 and 19% of rain and snow annual amounts in 1999 and 2000, respectively. For \( {\text{NO}}^{{\text{ - }}}_{{\text{3}}} \), \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \), and \( {\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} \), the contribution of fog deposition in total (bulk + fog) deposition is estimated as 54, 47, and 42%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acker, K., Möller, D., Wieprecht, W., & Naumann, S. (1995). Mt. Brocken, a site for cloud chemistry measurement programme in central Europe. Water, Air, and Soil Pollution, 85(4), 1979–1984.

    Article  CAS  Google Scholar 

  • Azevedo, J., & Morgan, D. L. (1974). Fog precipitation in coastal California forests. Ecology, 55, 1135–1141.

    Article  Google Scholar 

  • Bredemeier, M. (1988). Forest canopy transformation of atmospheric deposition. Water, Air, and Soil Pollution, 40, 121–138.

    CAS  Google Scholar 

  • Bridges, K. S., Jickels, T. D., Davies, T. D., Zeman, Z., & Hunova, I. (2002). Aerosol, precipitation and cloud water chemistry observation on the Czech Krusne Hory plateau adjacent to heavily industrialised valley. Atmospheric Environment, 36, 335–360.

    Article  Google Scholar 

  • Bücking, W., Evers, H., & Krebs, A. (1983). Bioelementgehalte der Niederschlags-, Sicker und Bodenwässer in Abhängigkeit von Baumart und Standort, Forstwissenschaftliches Centralblatt, 102, 293–297.

    Google Scholar 

  • Cape, J. N. (1993). Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees. Environmental Pollution, 82, 167–180.

    Article  CAS  Google Scholar 

  • Cape, J. N., Sheppard, L. J., Fowler, D., Harrison, A. F., Parkinson, J. A., & Dao, P. (1992). Contribution of canopy leaching to sulphate deposition in a Scotch pine forest. Environmental Pollution, 75, 229–236.

    Article  CAS  Google Scholar 

  • Elias, V., Tesar, M., & Buchtele, J. (1995). Occult precipitation: sampling, chemical analysis and process modelling in the Sumava Mts. (Czech Republic) and in the Taunus Mts. (Germany). Journal of Hydrology, 166, 409–420.

    Article  CAS  Google Scholar 

  • Erisman, J. W., Beier, C., Draaijers, G., & Lindberg, S. (1994). Review of deposition monitoring methods. Tellus, 46B, 79–93.

    CAS  Google Scholar 

  • Fisak, J., Tesar, M., Rezacova, D., Elias, V., Weignerova, V., & Fottova, D. (2002). Pollutant concentrations in fog and low cloud water at selected sites of the Czech Republic. Atmospheric Research, 64, 75–87.

    Article  CAS  Google Scholar 

  • Fisak, J., Tesar, M., Rezacova, D., & Fottova, D. (2004). Comparison of pollutant concentrations in solid and liquid deposited precipitations at the Milesovka Mt. In: The Third International Conference on Fog, Fog Collection and Dew. Cape Town, South Africa, 11–15 October 2004 (edited by Rautenbach), University of Pretoria, Pretoria 2004.

  • Fottova, D. (2003). Trends in sulphur and nitrogen deposition fluxes in the Geomon network, Czech Republic, between 1994–2002. Water, Air, and Soil Pollution, 150, 73–87.

    Article  CAS  Google Scholar 

  • Fottova, D., & Skorepova, I. (1998). Changes in mass element fluxes and their importance for critical loads: Geomon network, Czech Republic. Water, Air, and Soil Pollution, 105, 365–376.

    Article  CAS  Google Scholar 

  • Fowler, D., Gallagher, M. W., & Lovett, G. M. (1993). Fog, Cloudwater and Wet Deposition. In: Lövblad, G., Erisman, J. W., & Fowler, D. (Eds.), Models and methods for the quantification of atmospheric input to ecosystem. An international conference on the deposition of acidifying substances in Göteborg, 3–6 November 1992. The Nordic Council of Ministers, Copenhagen, pp. 53–73.

  • Gay, D. W., & Murphy, C. E. (1985). Final report: The deposition of SO2 on forest. EPRI Project R.P., 1813, Electric Power Research Institute, Palo Alto, California.

  • Granat, L., & Hällgren, J. E. (1992). Relation between estimated dry deposition and throughfall in a coniferous forest exposed to controlled levels of SO2 and NO2. Environmental Pollution, 75, 237–242.

    Article  CAS  Google Scholar 

  • Grunow, J. (1955). Der Niederschlag im Bergwald. Forstwissenschaftliches Centralblatt, 74, 21–36.

    Article  Google Scholar 

  • Holder, C. D. (2004). Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 190, 373–384.

    Article  Google Scholar 

  • Hruska, J., & Kram, P. (1994). Aluminium chemistry of the root zone of forest soil affected by acid deposition at the Lysina catchment, Czech Republic. Ecological Engineering, 3, 5–16.

    Google Scholar 

  • Hruska, J., Cudlin, P., & Kram, P. (2001) Relationship between Norway Spruce Status and Soil Water Base Cations/Aluminum Ratios in the Czech Republic. Water, Air, and Soil Pollution, 130, 983–988, (6).

    Article  Google Scholar 

  • Hunova, I., Santroch, J., & Ostatnicka, J. (2004). Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmospheric Environment, 38(2004), 887–898.

    Article  CAS  Google Scholar 

  • Kalina, M. F., Zambo, E., & Puxbaum, H. (1998). Assessment of wet, dry and occult deposition of sulfur and nitrogen at an alpine site. Environmental Science and Pollution Research, 1, 53–58.

    Google Scholar 

  • Lange, A. L., Matschullat, J., Zimmermann, F., Sterzik, G., & Wienhaus, O. (2003). Fog frequency and chemical composition of fog water—a relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany. Atmospheric Environment, 37(2003), 3731–3739.

    Article  CAS  Google Scholar 

  • Li, Z., & Aneja, V. P. (1992). Regional analysis of cloud chemistry at high elevations in the Eastern United States. Atmospheric Environment, 26A, 2001–2017.

    CAS  Google Scholar 

  • Liebold, E., & Drechsler, M. (1991). Schadenszustand und-entwicklung in den SO2 geschädigten Fichtengebieten Sachsens. AFZ Allgemeine Forst Zeitschrift für Wald-wirtschaft und Umweltvorsorge, 46, 492–494.

    Google Scholar 

  • Lin, N.-H., Lee, H.-M., & Chang, M.-B. (1999). Evaluation of the characteristics of acid precipitation in Taipei, Taiwan using cluster analysis. Water, Air, and Soil Pollution, 113, 241–260.

    Article  Google Scholar 

  • Lindberg, S. E., & Garten, C. T. (1989). Sources of sulphur in forest canopy throughfall. Nature, 336, 148–151.

    Article  Google Scholar 

  • Lindberg, S. E., & Owens, J. G. (1993). Throughfall studies of deposition to forest edges and gaps in montane ecosystems. Biogeochemistry, 19, 173–194.

    Article  CAS  Google Scholar 

  • Lovett, G. M. (1988). A comparison of methods for estimating cloud water deposition to a New Hampshire (USA) subalpine forest. In: Unsworth, M. H., & Fowler, D. (Eds.). Acid Deposition at High Elevation Sites. Kluwer Academic Publishers: London, pp. 309–320.

    Google Scholar 

  • Lovett, G. M., & Kuisman, J. D. (1990). Atmospheric pollutant deposition to high elevation ecosystems. Atmospheric Environment, 24(11), 2767–2786.

    Google Scholar 

  • Lovett, G. M., Reiners, W. A., & Olsen, R. K. (1982). Cloud droplet deposition in a subalpine balsam fir forest. Hydrologic and chemical inputs. Science, 218, 1303–1304.

    Article  CAS  Google Scholar 

  • Materna, J. (1985). Luftverunreinigungen and Waldschäden (Air pollution and damage to forest), in: Symposium uber Umweltschutz-eine internationale Aufgabe Prag 13–15 Marz 1985 (Symposium on Environmental Protection-An International Responsibility, Prague 13–15 March 1985), VDI-Verein Deutscher Ingenieure, Düsseldorf.

  • Mindas, J., & Skvarenina, J. (1995). Chemical composition of fog/cloud and rain/snow water in biosphere reserve Pol´ana. Ecology, 14, 125–137.

    Google Scholar 

  • Moldan, B. (1980). The analysis of atmospheric precipitation in Czechoslovakia. In: Ecological impact of acid precipitation. Proceedings of an International Conference (edited by Drablos, Tollan). Sandefjord, Norway.

  • Moldan, B. (1992). Atmospheric deposition in Czechoslovakia in 1976–1987. Narodni klimaticky program CSFR., 4, Praha, p.44 pp. (in Czech)

  • Olson, R. K., Reiners, W. A., Cronan, C. S., Lang, G. E. (1981). The chemistry and flux of throughfall and stemflow in a sub–alpine fir forest. Holarctic Ecology, 4, 291–300.

    CAS  Google Scholar 

  • Pahl, S. (1996). Fog deposition on spruce forests in high elevation sites (in German). Ber. d. DWD 198, p. 137.

  • Rogora, M., Mosello, R., Arisci, S., Brizzio, M. C., Barbiery, A., Balestrini, R. et al. (2006). An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia, 562, 17–40.

    Article  CAS  Google Scholar 

  • Saxena, V. K., & Lin, N. H. (1990). Cloud chemistry measurements and estimates of acidic deposition on an above cloudbase coniferous forest. Atmospheric Environment, 24A(2), 329–352.

    CAS  Google Scholar 

  • Schaefer, D. A., & Reiners, W. A. (1990). Throughfall chemistry and canopy processing mechanisms. In: Lindberg, S. E., Page, A. L., & Norton, S. A. (Eds.). Acid precipitation, Vol.3: sources, deposition and canopy interactions. Springer Verlag.

  • Schemenauer, R. S., Banic, C. M., & Urquizo, N. (1995). High elevation fog and precipitation chemistry in Southern Quebec,Canada. Atmospheric Environment, 29, 2235–2252.

    Article  CAS  Google Scholar 

  • Szarek-Lukaszewska, G. (2003). Sulphur Input to the Niepolomice Forest: Changes during 30 Years (Southern Poland). Polish Journal of Environmental Studies, 12, 230–244.

    Google Scholar 

  • Tesar, M., Elias, V., & Sir, M. (1995). Preliminary results of characterization of cloud and fog water in the mountains of Southern and Northern Bohemia. J. Hydrol. Hydromech., 43(6), 412–426.

    CAS  Google Scholar 

  • Tesar, M., Fisak, J., Sir, M., & Fottova, D. (2004). Time and Space Variability of the Occult Precipitation in the Selected Mountainous and Urban Areas of the Czech Republic. In: The Third International Conference on Fog, Fog Collection and Dew. Cape Town, South Africa, 11–15 October 2004 (edited by Rautenbach), University of Pretoria, Pretoria.

  • Vong, R. J., Sigmon, J. T., & Mueller, St. F. (1991). Cloud water deposition to Appalachian forests. Environmental Science and Technology, 25(6), 1014–1021.

    Article  CAS  Google Scholar 

  • Walmsley, J. L., Schemenauer, R. S., & Brigman, H. A. (1996). A method for estimating the hydrologic input from fog in mountainous terrain. Journal of Applied Meteorology, 35, 2237–2249.

    Article  Google Scholar 

  • Wrzesinsky, T., & Klemm, O. (2000). Summertime fog chemistry at mountainous site in central Europe. Atmospheric Environment, 34, 1487–1496.

    Article  CAS  Google Scholar 

  • Wrzesinsky, T., Thalmann, E., Burkard, R., Eugster, W., & Klemm, O. (2001). Fog deposition of nutrients and pollutants to a montane forest site. In: Proceedings of Second International Conference on Fog and Fog Collection.-(Ed. Schemenauer, R. S., Puxbaum, H.).-Ottawa, International Development Research Centre 2001, 169–172.

  • Zapletal, M. (1998). Atmospheric deposition of nitrogen compounds in the Czech Republic. Environmental Pollution, 102(S1), 305–311.

    Article  CAS  Google Scholar 

  • Zapletal, M. (2001). Atmospheric deposition of nitrogen and sulphur compounds in the Czech Republic. The ScientificWorld, 1(S2), 294–303.

    Google Scholar 

  • Zapletal, M. (2006). Atmospheric deposition of nitrogen and sulphur in relation to critical loads of nitrogen and acidity in the Czech Republic. Journal of Forest Science, 52(2), 92–100.

    CAS  Google Scholar 

  • Zapletal, M., Chroust, P., Paces, T., Skorepova, I., Fottova, D., Pacl, A., et al. (2001). Multikriterialni vyhodnocovani negativnich vlivu latek znecistujicich ovzdusi se zamerenim na acidifikaci, eutrofizaci a desikaci prirodnich ekosystemu zalozene na principu kritickych prahu dle metodologie EHK OSN. Project of Ministry of Environment of the Czech Republic. VaV/740/4/00. Ekotoxa, Opava. (in Czech).

  • Zapletal, M., Chroust, P., & Kunak, D. (2003). The relationship between defoliation of Norway spruce and atmospheric deposition of sulphur and nitrogen compounds in Hruby Jesenik Mountains (the Czech Republic). Ecology, 22, 337–347.

    CAS  Google Scholar 

  • Zier, M. (1990). Ergebnisse der Überwachung der Konzentration und Deposition atmosphärischer Spurenstoffe und Wetterstationen in Sachsen. In Expertentagung Waldschadensforschung im õstlichen Mitteleuropa und in Bayern“, ed. Reuther, M. et al., 13.-15.11.1990 in Schloss Neuburg/Inn bei Passau, GSF-Bericht, 24/91, p. 584–592.

  • Zimmermann, L., & Zimmermann, F. (2002). Fog deposition to Norway spruce stands at high-elevation sites in the Eastern Erzgebirge (Germany). Journal of Hydrology, 256, 166–175.

    Article  CAS  Google Scholar 

  • Zimmermann, F., Lux, H., Maenhaut, W., Matschullat, J., Plessow, K., Reuter, F., et al. (2003). A review of air pollution and Atmospheric deposition dynamics in southern Saxony, Germany, Central Europe. Atmospheric Environment, 37, 671–691.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Environment of the Czech Republic (project VaV/740/4/00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Zapletal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapletal, M., Kuňák, D. & Chroust, P. Chemical Characterization of Rain and Fog Water in the Cervenohorske Sedlo (Hruby Jesenik Mountains, Czech Republic). Water Air Soil Pollut 186, 85–96 (2007). https://doi.org/10.1007/s11270-007-9467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9467-0

Keywords

Navigation