Skip to main content
Log in

“In Situ” Amendments and Revegetation Reduce Trace Element Leaching in a Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Various amendments and/or a plant cover (Agrostis stolonifera L.) were assessed for their potential to reduce trace element leaching in a contaminated soil under semi-arid conditions. The experiment was carried out in field containers and lasted 30 months. Five treatments with amendments (leonardite (LEO), litter (LIT), municipal waste compost (MWC), biosolid compost (BC) and sugar beet lime (SL)) and a plant cover and two controls (control without amendment but with plant (CTRP) and control without amendment and without plant (CTR)) were established. Drainage volumes were measured after each precipitation event and aliquots were analysed for pH, electrical conductivity (EC) and trace element concentrations (As, Cd, Cu, Pb and Zn). Soil pH and trace element extractability (0.01 M CaCl2) at three different depths (0–10, 10–20 and 20–30 cm) were measured at the end of the experiment. Incorporation of amendments reduced leaching of Cd, Cu and Zn between 40–70% in comparison to untreated soil. The most effective amendments were SL, BC and MWC. At the end of the experiment, extractable concentrations of Cd, Cu and Zn were generally lower in all amended soils and CTRP compared to CTR. Soil pH decreased and extractability of metals increased in all treatments in relation to depth. Results showed that use of these amendments combined with healthy and sustainable plant cover might be a reliable option for “in situ” stabilization of trace elements in moderately contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals (2nd ed.). New York: Springer.

    Google Scholar 

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., et al. (2004). Soil pollution by a pyrite mine spill in Spain: Evolution in time. Environmental Pollution, 132, 395–401.

    Article  CAS  Google Scholar 

  • Albadalejo, J., Castillo, V., & Roldán, A. (1996). Rehabilitation of degraded soils by water erosion in semiarid environment. In J. L. Rubio & A. Calvo (Eds.), Soil degradation and desertification in semiarid environments (pp. 265–278). Logroño, Spain: Geoforma.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1994). Water quality for agriculture. FAO Irrigation and Drainage, paper 29, Rev 1.

  • Azevedo-Silveira, M. L., Ferraciú Alleoni, L. R., & Guimarães Guilherme, L. R. (2003). Biosolids and heavy metals in soils. Scientia Agricola, 60, 793–806.

    Article  Google Scholar 

  • Bagayoko, M., Alvey, S., Neumann, G., & Buerkert, A. (2000). Root-induced increases in soil pH and nutrient availability to field-grown cereals and legumes on acid sandy soils of Sudano-Sahelian West Africa. Plant and Soil, 225, 117–127.

    Article  CAS  Google Scholar 

  • Basta, N. T., & McGowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 73–82.

    Article  CAS  Google Scholar 

  • Burgos, P., Madejón, E., Pérez-de-Mora, A., & Cabrera, F. (2006). Spatial variability and chemical characteristics of a trace element-contaminated soil before and after remediation. Geoderma, 130, 157–175.

    Article  CAS  Google Scholar 

  • Cabrera, F., Clemente, L., Cordón, R., Hurtado, M. D., López, R., Madejón, P., et al. (2003). Heavy Metal pollution in soils of the Guadiamar river valley. In T. A. Del Valls & J. Blasco (Eds.), Integrated assesment and management of the ecosystems affected by the Aznalcóllar Mining Spill (SW, Spain) (pp. 33–40). UNESCO Publication.

  • Cabrera, F., Clemente, L., Díaz-Barrientos, E., López, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. The Science of the Total Environment, 242, 117–129.

    Article  CAS  Google Scholar 

  • Catalán Lafuente, J. (1981). Química del agua. Fuenlabrada, Spain: Talleres Gráficos Alonso, SA.

  • Chapman, H. D. (1965). Cation exchange capacity. In Black et al. (Eds). Methods of soil analysis (pp. 891–901). Madison, WI.: Agronomy 9, American Society of Agronomy Inc.

    Google Scholar 

  • Chlopecka, A., & Adriano, D. C. (1996). Mimicked in situ stabilization of metals in a cropped soil: Bioavailability and chemical forms of zinc. Environmental Science & Technology, 30, 3294–3303.

    Article  CAS  Google Scholar 

  • COM (2002). Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions, “Towards a Thematic Strategy for Soil Protection. 179 final, Brussels, 16.4.2002.

  • de Paz, J. M., Sánchez, J., & Visconti, F. (2006). Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region. Journal of Environmental Management, 79, 150–162.

    Article  Google Scholar 

  • Derome, J. (2000). Detoxification and amelioration of heavy metal-contaminated forest soils by means of liming and fertilisation. Environmental Pollution, 107, 79–88.

    Article  CAS  Google Scholar 

  • Dunbabin, J. S., Pokorny, J., & Bowmer, K. H. (1988). Rhizosphere oxigenation by Typha dominguensis Pers. in miniature artificial wetland filters used for metal removal from wastewaters. Aquatic Botany, 29, 303–317.

    Article  Google Scholar 

  • Filius, A., Streckt, T., & Richter, J. (1998). Cadmium sorption and desorption in limed topsoils as influenced by pH: Isotherms and simulated leaching. Journal of Environmental Quality, 27, 12–18.

    Article  CAS  Google Scholar 

  • Guisquiani, P. L., Pagliai, M., Gigliotti, G., Businelli, D., & Benetti, A. (1995). Urban waste composts: Effects on physical, chemical and biochemical soil properties. Journal of Environmental Quality, 24, 175–182.

    Article  Google Scholar 

  • Halim, M., Conte, P., & Piccolo, A. (2003). Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemospohere, 52, 265–275.

    Article  CAS  Google Scholar 

  • Henin, S., Gras, R., & Monnier, G. (1972). In C. Roquero De Laburu & J. García Caral (Eds.), El perfil cultural. Madrid: Mundi-Prensa.

    Google Scholar 

  • Hesse, P. R. (1971). A textbook of soil chemical analysis. New York: Chemical.

    Google Scholar 

  • Kahn, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.

    Article  Google Scholar 

  • Knox, A., Seaman, J. C., Mench, M. J., & Vangronsveld, J. (2001). Remediation of metal- and radionuclides-contaminated soils by in situ stabilization techniques. In I. K. Iskandar (Ed.), Environmental restoration of metal-contaminated soils (pp. 21–60). Boca Raton, FL: Lewis.

    Google Scholar 

  • Luymes, D. M. (2000). The hydrological effects of urban forests, with reference to the maritime Pacific Northwest. James Taylor Chair in Landscape and liveable Environments Technical Bulletin 6.

  • Lynch, J. M., & Bragg, E. (1985). Microorganisms and soil aggregate stability. Advance Soil Science, 2, 133–171.

    Google Scholar 

  • Madejón, E., Burgos, P., López, R., & Cabrera, F. (2003). Agricultural use of three organic residues: effect on orange production and on properties of a soil of the Comarca Costa de Huelva (SW Spain). Nutrient Cycling and Agroecosystems, 65, 281–288.

    Article  Google Scholar 

  • Madejón, E., López, R., Murillo, J. M., & Cabrera, F. (2001). Agricultural use of three (sugar-beet) vinasse composts: Effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain). Agriculture Ecosystems and Environment, 84, 55–65.

    Article  Google Scholar 

  • McBride, M. B., Richards, B. K., Steenhuis, T. S., Peverly, J. H., Russel, J. J., & Suave, S. (1997). Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Science, 162, 487–500.

    Article  CAS  Google Scholar 

  • Meers, E., Unamuno, V. R., Du Laing, G., Vangronsveld, J., Vanbroekhoven, K., Samson, R., et al. (2006). Zn in the soil solution of unpolluted and polluted soils as affected by soil characteristics. Geoderma, 137, 107–119.

    Article  CAS  Google Scholar 

  • Mench, M., Didier, V., Löffler, M., Gomez, A., & Masson, P. (1994). A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. Journal of Environmental Quality, 23, 58–63.

    Article  CAS  Google Scholar 

  • Mench, M., J. Vangronsveld, Lepp, N. W., & Edwards, R. (1998). Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In J. Vangronsveld & S. D. Cunningham (Eds.), Metal-contaminated soils: In-situ inactivation and phytorestoration (pp. 151–182). Berlin-Heidelberg: Springer.

    Google Scholar 

  • Pérez-de-Mora, A., Madejón, E., Burgos, P., & Cabrera, F. (2006a). Trace elements availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation I. Soils. The Science of the Total Environment, 363, 28–37.

    Article  CAS  Google Scholar 

  • Pérez-de-Mora, A., Madejón, E., Burgos, P., & Cabrera, F. (2006b). Trace elements availability and plant growth in a mine-spill- contaminated soil under assisted natural remediation II. Plants. The Science of the Total Environment, 363, 38–45.

    Article  CAS  Google Scholar 

  • Richards, B. K., Steenhuis, T. S., Peverly, J. H., & McBride, M. B. (2000). Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerating loading. Environmental Pollution, 109, 327–346.

    Article  CAS  Google Scholar 

  • Roussel, C., & Néel, B. H. (2000). Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. The Science of the Total Environment, 263, 209–219.

    Article  CAS  Google Scholar 

  • Ruttens, A. Mench, M., Colpaert, J. V., Boisson, J., Carleer, R., & Vangronsveld, J. (2006a). Phytostabilization of a metal contaminated sandy soil I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and availability of metals. Environmental Pollution, 144, 524–532.

    Article  CAS  Google Scholar 

  • Ruttens, A., Mench, M., Colpaert, J. V., Boisson, J., Carleer, R., & Vangronsveld, J. (2006b). Phytostabilization of a metal contaminated sandy soil II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environmental Pollution, 144, 533–539.

    Article  CAS  Google Scholar 

  • Siedlecka, A., Tukendorf, A., Skórzynska-Polit, E., Maksymiec, W., Wójcik, M., Baszynski, T., Krupa, Z. (2001). Angiosperms (Asteracea, Convolvulacea, Fabacea and Poacea; other than Brassicaceae). In M. N. V. Prasad (Ed.), Metals in the environment. Analysis by biodiversity (pp. 171–217). New York: Marcel Dekker Inc.

  • Simón, M., Ortiz, I., García, I., Fernández, E., Fernández, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcóllar, Spain). The Science of the Total Environment, 242, 105–115.

    Article  Google Scholar 

  • Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28, 1442–1447.

    Article  CAS  Google Scholar 

  • Tiku, B. L., & Snaydon., R. W. (1971). Salinity tolerance within the grass species Agrostis stolonifera. Plant and Soil, 35, 421–431.

    Article  Google Scholar 

  • Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous wastes. Chemosphere, 41, 219–228.

    Article  CAS  Google Scholar 

  • USDA. Soil Survey Staff (1996). Keys to Soil Taxonomy. US Department of Agriculture, Soil Conservation Service, Washington DC.

  • Ure, A. M., & Davidson, C. M. (1995). Chemical speciation in the environment. London: Blackie Academic.

    Google Scholar 

  • Ure, A. M., Quevauviller, P. H., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the Comission of the European Communities. International Journal of Environmental and Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • Vangronsveld J., & Cunningham, S. D. (1998). Introduction to the concepts. In J. Vangronsveld, & S. D. Cunningham (Eds.), Metal contaminated Soils: In-situ inactivation and phytorestoration (pp. 219–225). Berlin: Springer.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed determination of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Xiao, C., Ma, L. Q., & Sarigunba, T. (1999). Effects of soil on trace metal leachability from paper-mill ashes and sludge. Journal Environmental Quality, 25, 321–333.

    Article  Google Scholar 

  • Yanful, E. K., & Orlandea, M. P. (2000). Controlling acid drainage in a pyritic mine waste rock. Part II – Geochemistry of drainage. Water, Air & Soil Pollution, 124, 259–283.

    Article  CAS  Google Scholar 

  • Youssef, R. A., & Chino, M. (1989). Root-induced changes in the rhizosphere of plants. I. pH changes in relation to the bulk soil. Soil Science & Plant Nutrition, 35, 461–468.

    Google Scholar 

  • Zhu, Y. M., Berry, D. F., & Martens, D. C. (1991). Copper availability in two amended soils with 11 annual applications of copper-enriched hog manure. Communications in Soil Science and Plant Analysis, 22, 769–783.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out in the framework of the project REN 2000-1519 TECNO supported by the CICYT. Dr. Burgos thanks her I3P program contract financed by the European Social Fund. Dr. Pérez-de-Mora thanks the Spanish MECD the financial support by the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engracia Madejón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-de-Mora, A., Burgos, P., Cabrera, F. et al. “In Situ” Amendments and Revegetation Reduce Trace Element Leaching in a Contaminated Soil. Water Air Soil Pollut 185, 209–222 (2007). https://doi.org/10.1007/s11270-007-9443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9443-8

Keywords

Navigation