Skip to main content
Log in

Effect of Sludge Dissolved Organic Matter on Oxidation of Ferrous Iron and Sulfur by Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Although two species of chemolithoautotrophic bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, are widely considered to be the main microorganisms that control the process of bioleaching of heavy metals from sewage sludge, little is known about the effect of dissolved organic matter (DOM) present in sewage sludge on bacterial oxidation of energy substrate. Batch cultures studies showed that sludge DOM significantly inhibited ferrous iron and sulfur oxidation by Acidithiobacillus ferrooxidans LX5 and Acidithiobacillus thiooxidans TS6, respectively. The toxicity of sludge DOM appeared when the concentration was higher than 150 mg DOC L−1. Among the organic compounds tested, the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species. Of these organic acids, formic acid was the most toxic one as indicating that iron and sulfur oxidation almost were entirely inhibited at a concentration of 1.67 mM. In addition, it was found that A. ferrooxidans LX5 was more sensitive to glucose, starch, and citric acid than A. thiooxidans TS6, while the former seemed to be more acetic, propionic, and butyric acid resistant than the latter. In the selected 150 mg DOC L−1 of DOM derived from Sludge-H, the concentrations of formic acid and acetic acid were 8.94 mM and 2.09 mM, respectively, being a contributing factor causing 95% inhibition of iron oxidation and 70% inhibition of sulfur oxidation. To exploit specific heterotrophic microorganisms to eliminate these toxic organic compounds should be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, B., Leach, S. and Ingledew, W. J.: 1987, ‘The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans’, J. Gen. Microbiol. 133, 1171–1179.

    Google Scholar 

  • APHA.: 1989, Standard Methods for the Examination of Water and Wastewater, 17th ed., Amer. Public Health Assoc., Washington, D.C.

  • Ashcroft, S. F. and Mortimer, C. T.: 1970, Thermochemistry of Transition Metal Complexes, Academic Press, New York, 196–212 pp.

    Google Scholar 

  • Bevilaqua, D., Leite, A. L. L. C., Garcia, O., Jr. and Tuovinen, O. H.: 2002, ‘Oxidation of chaocopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks’, Proc. Biochem. 38, 587–592.

  • Butler, R. D. and Umbreit, W. W.: 1966, ‘Absorption and utilization of organic matter by the strict autotrophy, Thiobacillus thiooxidans, with special reference to aspartic acid’, J. Bacteriol. 91, 661–666.

    Google Scholar 

  • Cabrera, G., Gömez, J. M. and Cantero, D.: 2005, ‘Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures’, Proc. Biochem. 40, 2683–2686

    Google Scholar 

  • Chatain, V., Bayard, R., Sanchez, F., Moszkowicz, P. and Gourdon, R.: 2005, ‘Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions’, Environ. Int. 31, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B. Y., Liu, H. L., Chen, Y. W., Cheng and Y. C.: 2004, ‘Dose-response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BC1’, Proc. Biochem. 39, 735–745.

  • De, G. C., Oliver, D. J. and Pesic, B. M.: 1997, ‘Effect of heavy metals on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans’, Hydrometallurgy. 44, 53–63.

    Article  CAS  Google Scholar 

  • Deveci, H., Akcil, A. and Alp, I.: 2004, ‘Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron’, Hydrometallurgy. 73, 293–303.

    Article  CAS  Google Scholar 

  • Frattini, C. J., Leduc, L. G. and Ferroni, G. D.: 2000, ‘Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans’, Antonie van Leeuwenhoek. 77, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Gamache, M., Blais, J. F., Tyagi, R. D. and Meunier, N.: 2001, ‘Microflore hétérotophe impliquée dans le procédé simultané de biolixiviation des métaux et de digwstion des boues dé puration’. Can. J. Civ. Eng. 28, 158–174.

    Article  Google Scholar 

  • Gu, X. Y. and Wong, J. W. C.: 2004, ‘Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge’, Environ. Sci. Technol. 38, 2934–2939.

    Article  Google Scholar 

  • Han, Y. and Dague, R. R.: 1997, ‘Laboratory studies on the temperature-phased anaerobic digestion of domestic primary sludge’. Water Environ. Res. 69, 1139–1143.

    Article  Google Scholar 

  • Harahuc, L., Lizama, H. M. and Suzuki, I.: 2000, ‘Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans’. Appl. Environ. Microbiol. 66, 1031–1037.

    Article  Google Scholar 

  • Liu, H. L., Teng, C. H. and Cheng, Y.C.: 2004, ‘A semiempirical model for bacterial growth and bioleaching of Acidithiobacillus spp’, Chem. Eng. J. 99, 77–87.

    Article  CAS  Google Scholar 

  • Magnin, J., Baillet, F., Boyer, A., Zlatev, R., Luca, M., Cheruy, A. and Ozil, P.: 1998, ‘Augmentation, par regeneration é lectrochimique du substrat, de la production d'une biomasse (Thiobacillus ferrooxidans DSM 583) pour un procédé biologique de récupération de mé taux’, Can. J. Chem. Eng. 76, 978–984.

    Article  Google Scholar 

  • Marlina, J. F., Jr.: 1992, In design of anaerobic process for the treatment of industrial and municipal waste, Technomic Publishing, Lancaster, PA. 167 pp.

    Google Scholar 

  • Mazuelos, A., Iglesias, N. and Carranza, F.: 1999, ‘Inhibition of bioleachig process by organics from solvent extraction’, Proc. Biochem. 35, 425–431.

    Google Scholar 

  • Meruane, G. and Vargas, T.: 2003, ‘Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans cin the pH ranges 2.5–7.0’, Hydrometallurgy. 71, 149–158.

    Article  CAS  Google Scholar 

  • Picher, S., Drogui, P., Guay, R. and Blais, J. F.: 2002, ‘Wastewater sludge and pig manure used as culture media for bioleaching of metal sulphides’, Hydrometallurgy. 65, 177–186.

    Article  CAS  Google Scholar 

  • Qureshi, S., Richards, B. K., Hay, A. G., Tsai, C. C., McBride, M. B., Baveye, P. and Steenhuis, T. S.: 2003, ‘Effect of microbial activity on trace element release from sewage sludge’, Environ. Sci. Technol. 37, 3361–3366.

    Article  Google Scholar 

  • Ryu, H. W., Moon, H. S., Lee, E. Y., Cho, K. S. and Choi, H.: 2003, ‘Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET’, J. Environ. Qual. 32, 751–759.

    Article  Google Scholar 

  • Schrader, J. A. and Holmes, D. S.: 1988, ‘Phenotypic switching Thiobacillus ferrooxidans’, J. Bacteriol. 170, 3915–3923.

    Google Scholar 

  • Schrenk, M. O., Edwards, K. J., Goodman, R. M., Hamers, R. J. and Banfield, J. F.: 1998, ‘Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans – implications for generation of acid mine drainage’, Science 279, 1519–1522.

    Article  Google Scholar 

  • Sharma, P. K., Das, A., Hanumamtha Rao, K. and Forssberg, K. S. E.: 2003, ‘Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions’, Hydrometallurgy 71, 285–292.

    Article  CAS  Google Scholar 

  • Shen, S. B., Tyagi, R. D., Blais, J. F. and Surampalli, R. Y.: 2003, ‘Bacterial leaching of metals from tannery sludge by indigenous sulphur-oxidizing bacteria – effect of sludge solids concentration’, J. Environ. Eng. 129, 513–519.

    Article  CAS  Google Scholar 

  • Shi, S. Y. and Fang, Z. H.: 2005, ‘Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor’, Int. J. Miner. Process. 76, 3–12.

    Article  CAS  Google Scholar 

  • Sreekrishnan, T. R., Tyagi, R. D., Blais, J. F., Meunier, N. and Campbell, P. G. C.: 1996, ‘Effect of sulfur concentration on sludge acidification during the SSDML process’, Water Res. 30, 2728–2738.

    Article  Google Scholar 

  • Suzuki, I., Lee, D., Mackay, B., Harahuc, L. and Oh, J. K.: 1999, ‘Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans’, Appl. Environ. Microbiol. 65, 5163–5168.

    Google Scholar 

  • Tuovinen, O. H., Niemela, S. I. and Gyllenberg, H. G.: 1971, ‘Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans’, Biotechnol. Bioeng. 13, 517-527.

    Article  CAS  Google Scholar 

  • Tuttle, J. H. and Dugan, P. R.: 1976, ‘Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds’, Can. J. Microbiol. 22, 719–730.

    Article  Google Scholar 

  • Tyagi, R. D., Blais, J. F., Auclair, J. C. and Meunier, N.: 1993, ‘Bacterial leaching of toxic metals from municipal sludge: Influence of sludge characteristics’, Water Environ. Res. 65, 196–204.

    Google Scholar 

  • Tyagi, R. D., Blais, J. F., Meunier, N. and Benmoussa, H.: 1997, ‘Simultaneous sewage sludge digestion and metal leaching-Effect of sludge solids concentration’, Water Res. 31, 105–118.

    Article  Google Scholar 

  • Tyagi, R. D., Sreekrishnan, T. R., Blais, J. F. and Campbell, P. G. C.: 1994, ‘Kinetics of heavy metal bioleaching from sewage sludge-III. Temperature effects’, Water Res. 28, 2367–2375.

    Article  Google Scholar 

  • Tyagi, R. D., Sreekrishnan, T. R., Blais, J. F., Surampalli, R. Y. and Campbell, P. G. C.: 1998, ‘Effect of dissolved oxygen on sludge acidification during the SSDML process’, Water Air Soil Pollut. 102, 139–155.

    Article  Google Scholar 

  • Vogler, K. G., Lepage, G. A. and Umbreit, W.W.: 1942, ‘The respiration of Thiobacillus thiooxidans on sulfur’, J. Gen. Physiol. 26, 89–102.

    Article  Google Scholar 

  • Wang, S. M., Zhou, L. X., Huang, F. Y., Fang, D.: 2004, ‘Isolation of heterotrophic microorganism and its role in bioleaching of heavy metals from tannery sludge’, Environ. Sci. 25, 153–157.

    CAS  Google Scholar 

  • Yates, J. R. and Holmes, D. S.: 1987, ‘Two families of repeated DNA sequences in Thiobacillus ferrooxidans’, J. Bacteriol. 169, 1861–1870.

    Google Scholar 

  • Yoshizaki, S. R. and Tomida, T. H.: 2000, ‘Principle and process of heavy metal removal from sewage sludge’, Environ. Sci. Technol. 34, 1572–1575.

    Article  Google Scholar 

  • Zhou, L. X., Fang, D., Wang, S. M., Wong, J. W. C. and Wang, D. Z.: 2005, ‘Bioleaching of Cr from tannery sludge: The effects of initial acid addition and recycling of acidified bioleached sludge’, Environ. Technol. 26, 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, L. X. and Wong, J. W. C.: 2001, ‘Effect of dissolved organic matters derived from sludge and composted sludge on soil Cu sorption’, J. Environ. Qual. 30, 878–883.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, D., Zhou, L.X. Effect of Sludge Dissolved Organic Matter on Oxidation of Ferrous Iron and Sulfur by Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans. Water Air Soil Pollut 171, 81–94 (2006). https://doi.org/10.1007/s11270-005-9014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-9014-9

Keywords

Navigation